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Rickettsia parkeri is a tick-borne microorganism, only recently recognized to 

cause disease in humans. The ecology of this disease is largely unknown, and was 

addressed through a series of laboratory and field investigations. Feeding behavior of 

immature stages of the primary vector, Amblyomma maculatum, on mammalian, avian, 

and reptilian host models was investigated. It was determined that this tick does not feed 

on anoles, and nymphs do display longer periods of attachment to and are significantly 

heavier having fed on cotton rats as compared with quail. Field surveys indicate evidence 

of exposure to spotted fever group rickettsiae in small mammals and farm-raised quail in 

Mississippi, but not in passerines. Results from experimental studies demonstrated that 

cotton rats become acutely infected with R. parkeri, but that quail do not show evidence 

of infection. Additionally, nymphal ticks were not able to acquire the organism from 

inoculated animals. Finally, a reverse line-blot assay was developed to identify sources of 

bloodmeal in archived, field-collected A. maculatum samples. This dissertation 

contributes important findings to our understanding of the ecology of R. parkeri and has 

implications for future work on the subject. 
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CHAPTER I 

INTRODUCTION 

Between 1940 and 2004, at least 335 new or “emerging” infectious diseases 

circulated among humans (Jones et al. 2008). These can be defined as “infections that 

have newly appeared in a population or have existed but are rapidly increasing in 

incidence or geographic range” (Morse 1995). Just over half (54.3%) of these emerging 

disease events (as defined by the first case or cluster of cases) have been associated with 

bacteria and rickettsiae, with this number having increased because of emerging drug-

resistant bacteria (Jones et al. 2008). 

Tick-borne rickettsial organisms, such as the agent of Rocky Mountain spotted 

fever (RMSF) and that of Mediterranean spotted fever (MSF), may be pathogenic to 

humans, but several rickettsiae are non-pathogenic or of unknown pathogenicity, leading 

to confusion among physicians and diagnosticians (Goddard 2001). Those agents of non-

pathogenic or unknown status, however, should be regarded with care; some 

rickettsiologists have cautioned that all rickettsiae isolated thus far should be considered 

potential pathogens (Raoult and Olson 1999). In fact, some rickettsiae that were 

originally thought to be non-pathogenic were ultimately found to cause disease (Paddock 

et al. 2004). A specific example of this incited the research herein. 

In 2002, a man from Virginia presented to a clinic with fever, headache, myalgia, 

arthralgia, and general discomfort. In addition, there were multiple eschars (areas of 
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necrosis) on his legs. The case was subsequently reported when Paddock et al. (2004) 

diagnosed the illness as infection with Rickettsia parkeri, a tick-borne rickettsial agent 

first identified in 1937 by R. R. Parker (Parker 1939). A second human case was reported 

in 2006 from Mississippi (Finley et al. 2006) and a third in 2007 from Virginia (Whitman 

et al. 2007). Thus far, more than 20 suspected or confirmed cases of R. parkeri infection 

have been documented in the United States (Paddock et al. 2010). States from which 

cases have been reported in the literature are Virginia (2 confirmed), Mississippi (1 

confirmed, 3 probable), Texas (1 confirmed, 2 probable), Florida (2 probable), Kentucky 

(1 confirmed), South Carolina (1 confirmed), Alabama (1 probable), and Maryland (1 

confirmed) (Paddock et al. 2008, Cragun et al. 2010).  Cases of infection with R. parkeri 

have also been documented in Latin America. Two cases in Uruguay were confirmed, 

and in Argentina two cases were confirmed with seven more suspected cases reported 

(Conti-Diaz et al. 2009, Romer et al. 2011). Confirmed cases throughout the Americas 

are shown in Figure 1. In fact, since recognizing R. parkeri as a cause of human disease, 

there has been some speculation that cases previously reported as RMSF, caused by R. 

rickettsii, were actually R. parkeri infections (Raoult and Paddock 2005). 

Given that R. parkeri is now recognized as a pathogen, understanding its 

maintenance in nature would help evaluate risk of human disease and encourage a more 

targeted approach to controlling transmission to humans. The pathogen is carried by the 

tick species Amblyomma maculatum, A. triste and A. tigrinum, though A. maculatum 

appears to be the primary vector for transmission to humans in the United States (Parker 

1939, Goddard and Norment 1983, Goddard and Norment 1986, Venzal et al. 2004, 

Silveira et al. 2007, Sumner et al. 2007, Cohen et al. 2009, Tomassone et al. 2010). In an 
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experimental setting, A. americanum has been shown to be a competent vector (Goddard 

2003) and the agent has also been found in field-collected A. americanum (Cohen et al. 

2009). Amblyomma maculatum, or the Gulf Coast tick, is known to feed on small animals 

as a larva or nymph, and on large mammals as an adult. However, the range of animals 

that may serve as hosts is wide and little is known concerning the role of specific 

vertebrate hosts in the endemic cycle of R. parkeri. Specifically, neither host preference 

nor feeding performance on specific host species is well defined for A. maculatum. This 

information could shed light on what animals may be exposed to R. parkeri and may be 

susceptible to infection. Ultimately, studies should be designed to evaluate the influence 

of key vertebrate hosts in the maintenance and transmission of R. parkeri, and, perhaps 

more importantly, what vertebrate species might be useful as sentinels for infection in 

nature. In addition, prevalence of both infected vertebrate hosts and ticks in nature would 

help gauge potential disease exposure to this pathogen. The overall objective of this 

dissertation was to fill gaps in our understanding of the role of various vertebrates in the 

natural history of R. parkeri. 

The specific aims for this research were to: 

1. Determine host preference and feeding success of A. maculatum larvae 

and nymphs when given cotton rats (Sigmodon hispidus), anoles (Anolis 

carolinensis), and northern bobwhite (Colinus virginianus) as potential 

hosts. 

2. Evaluate susceptibility of cotton rats and northern bobwhite to infection 

with R. parkeri and their ability to subsequently transmit the bacterium to 

feeding A. maculatum. 
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a. Objective 1: Assess host susceptibility to R. parkeri infection by 

needle inoculation and ability of feeding A. maculatum larvae to 

acquire rickettsiae. 

b. Objective 2: Attempt isolation of R. parkeri from needle inoculated 

cotton rats and quail and acquisition fed A. maculatum nymphs.  

3. Estimate the prevalence of R. parkeri in wild rodents and birds collected 

from various sites in Mississippi. 

4. Assess the utility of reverse line blot hybridization for bloodmeal analysis 

in archived field-collected adult A. maculatum. 
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Figure 1.1 Cases of Rickettsia parkeri infection in the Americas. 

Shown are confirmed cases of R. parkeri infection in humans throughout the Americas. 
Additional probable cases have been reported from the same countries and states, but also 
include Florida and Alabama. 
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CHAPTER II 

LITERATURE REVIEW 

Importance of vector/tick-borne diseases 

Vector-borne diseases have shaped history and impacted both human and non-

human animal health globally. It was at the end of the 19th century that arthropods were 

determined to be able to act as vectors of disease (Harwood and James 1979, Gubler 

1998). Ticks are particularly important vectors of disease for most vertebrates, including 

humans. Ticks are associated with the highest diversity of pathogens than any other 

arthropod vector, harboring viruses, bacteria, rickettsiae, and protozoans (Jongejan and 

Uilenberg 2004).  

Tick-borne diseases of veterinary and human medical importance occur 

worldwide, affecting human and non-human animal health. With events such as climate 

change and anthropogenic disturbances including international travel (Gratz 1999, 

Harvell et al. 2002), it seems likely that any geographic distinction between disease 

occurrences will be blurred. It is widely accepted that species diversity is highest in 

tropical regions of the world (Hillebrand 2004). This seems to hold true for parasite 

diversity as well (Poulin and Rohde 1997, Rohde and Heap 1998). There is a 

physiological tolerance level of individual species for specific climatic conditions (Currie 

et al. 2004); change in climate should then imply change in species richness (H-Acevedo 

and Currie 2003), including vector diversity (Githeko et al. 2000). Changes in climate 
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seem indeed to be intertwined with vector distributions. Mild winters in Sweden have 

been demonstrated to be correlated with tick distributions expanding north (Lindgren et 

al. 2000). In addition, life cycles seem to be accelerating, with seasonal peaks of tick 

activity occurring earlier in the year (Bormane et al. 2004). 

Amblyomma maculatum as a vector 

Ticks are important vectors of disease agents. Because of characteristics such as 

persistence when feeding, long lifespans, and high reproductive potential, they are 

efficient at maintaining and transmitting many pathogens. Not only do they have few 

predators (mainly birds and fire ants), they generally feed on more than one host 

throughout their life cycles (Harwood and James 1979, Wojcik et al. 2001). This allows 

for widespread dispersal of disease agents.  

Rickettsia parkeri was first isolated from Gulf Coast ticks (Amblyomma 

maculatum) taken from cows in Texas (Parker 1939). Because R. parkeri has only 

recently become of epidemiological interest, little is known about where it is found 

geographically. A study published in 2007 suggested an 11-12% prevalence of the 

bacterium at sites in Florida and Mississippi (Sumner et al. 2007). More recently, ticks 

collected in Florida and Mississippi were found to be infected with R. parkeri at an 

average rate of 28%, with the highest prevalence of 40% seen in Jackson County, 

Mississippi (Paddock et al. 2010). In Virginia, 41.4% to 43.1% of ticks screened were 

positive for R. parkeri (Fornadel et al. 2011, Wright et al. 2011). Thirty percent of A. 

maculatum tested in Arkansas were positive for R. parkeri (Trout et al. 2010). A range of 

20-33% prevalence was reported in A. maculatum sampled from various counties in 

North Carolina in 2009 and 2010 (Varela-Stokes et al. 2011). These high rates of 



www.manaraa.com

 

10 

infection of A. maculatum with R. parkeri are in contrast with studies done concerning R. 

rickettsii. This agent is typically found at lower rates in its tick vectors – generally less 

than 5% (Burgdorfer et al. 1975, Linnemann et al. 1980, Gordon et al. 1984, McDade and 

Newhouse 1986, Walker and Fishbein 1991, Wikswo et al. 2008). 

Rickettsia parkeri has also been detected in A. americanum adults but at much 

lower rates (Goddard and Norment 1986), and in A. triste in Uruguay (Silveira et al. 

2007). Amblyomma tigrinum ticks collected from dogs in Bolivia were positive for 

Rickettsia spp.; a blood sample from one of the dogs tested positive for R. parkeri, and all 

dogs had circulating antibodies to rickettsiae (Tomassone et al. 2010). Several other tick 

species, including A. ovale, A. aureolatum, and Rhipicephalus sanguineus, have been 

shown to be infected with R. parkeri (Medeiros et al. 2011).   

Amblyomma maculatum is also associated with other agents of disease. In 1997, 

adult A. maculatum were removed from a dog showing clinical signs of hepatozoonosis 

(Vincent-Johnson et al. 1997). It was subsequently found that both A. maculatum larvae 

and nymphs have the ability to acquire Hepatozoon americanum from infected dogs and 

that the protozoan is passed transtadially in the ticks (Mathew et al. 1998, Ewing et al. 

2002b). In 2000, it was determined that A. maculatum has the potential to vector yet 

another agent of disease, Ehrlichia (Cowdria) ruminantium, the causative agent of 

heartwater (Mahan et al. 2000). Heartwater is a fatal disease of both domestic and wild 

ruminants in Sub-Saharan Africa and the Caribbean (Cowdry 1925, Perreau et al. 1980), 

and therefore, A. maculatum’s potential ability to act as a vector of this protozoan has 

important implications for the cattle industry in the United States. 
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History and characteristics of A. maculatum 

The history of Amblyomma maculatum dates back to 1844, when C.L. Koch first 

documented the physical characteristics of an adult male. The author did not have a 

female specimen, but the male was noted to be from “Carolina” (Koch 1844, Mahan et al. 

2000). In 1912, a paper was published with details on the physical characteristics, host 

associations, geographical distribution, and biology of the different life stages of A. 

maculatum (Hooker et al. 1912). The authors report the tick’s distribution to be along the 

Gulf and southern Atlantic coasts of the United States, in contrast to most Amblyomma 

species which are established in tropical or subtropical parts of the world (Sonenshine 

1991). While Hooker et al. also note the tick as occurring in areas of South and Central 

America, these specimens may have been confused with other Amblyomma species 

(discussed later). The same paper documented the “gotch ear” condition that this tick 

causes in certain host animals (Hooker et al. 1912). The tick came under scrutiny once it 

was implicated in facilitating screw worm infestations of livestock and therefore causing 

significant economic losses in the southern United States (Bishopp and Hixson 1936). 

Various authors over the years since then have continued to add to the body of 

knowledge concerning the Gulf Coast tick (Hixson 1940, Koch and Hair 1975, Gladney 

et al. 1977, Price 1980). 

In 1939, R.R. Parker brought A. maculatum to light for what was to become 

arguably the most important reason. Parker isolated two strains of an “infectious agent” 

from A. maculatum collected from cattle in Liberty County, Texas. Experiments 

performed with this “rickettsia-like infectious agent” showed it to be mildly pathogenic to 

guinea pigs (Parker 1939). Although this was reported just before the start of World War 
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II, it was only until the turn of the twenty-first century that Parker’s work and thus the 

tick became significant again (Paddock et al. 2004). 

Details of A. maculatum’s history are complicated by confusion with closely 

related species, namely A. triste. In 1901, a French scientist documented a female A. 

maculatum from Paraguay and several others from Argentina, Chile, and Mexico 

(Neumann 1901). Those from Mexico were found on a lizard. Three from Buenos Aires 

were from a mammal (Neumann 1901). Lahille reported A. maculatum from Argentina 

from a dog, following Neumann’s descriptions (Lahille 1905). These and many 

subsequent publications (Gedoelst 1903, Hunter and Hooker 1907, Cooley and Kohls 

1944) likely made an error in claiming certain specimens to be A. maculatum. In 1956, 

Kohls published a paper documenting the error, claiming that no A. maculatum 

specimens analyzed by the author originated from any farther south than Colombia and 

Venezuela. The author also suggested that past “A. maculatum” examined from 

Argentina may have instead been A. tigrinum. The species A. triste was documented to 

differ from A. maculatum because of the presence of paired spurs along metatarsi II, III, 

and IV. Kohls also noted that A. triste differs by “the presence ventrally in both sexes of a 

small tubercle at the postero-interno angle of all festoons except the middle one” (Kohls 

1956). Because such details can be easily overlooked, it is no wonder there was some 

confusion in differentiating between these species.  

The genus Amblyomma and the subfamily it belongs to, Amblyomminae, have 

been through some taxonomic rearrangements. The Ixodidae family is divided into two 

major phyletic lines: Prostriata and Metastriata. The former is composed only of the 

genus Ixodes. The Metastriata includes the remaining ixodid ticks, classified into four 
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subfamilies: Amblyomminae, Haemaphysalinae, Hyalomminae, and Rhipicephalinae 

(Hoogstraal and Aeschlimann 1982). Some have referred to Amblyomminae as its own 

family, Amblyommidae (Siuda et al. 2006, Rymaszewska and Grenda 2008). This 

review, however, will treat the group as a subfamily. The Amblyomminae were originally 

thought to have evolved earliest, followed by the Haemaphysalinae (Sonenshine 1991). 

More recent research, however, suggests that the Ambylomminae are not monophyletic. 

Black et al. demonstrated this with work performed targeting the mitochondrial 16S 

rDNA gene (Black and Piesman 1994). The same paper shows A. maculatum to be most 

closely related to those Haemaphysalis species included (H. cretica and H. 

leporispalustris). Of the Amblyomma species in the study, A. maculatum is positioned 

closest to A. hebraeum and A. variegatum (Black and Piesman 1994). This finding is 

contradicted by research carried out with the 18S nuclear rDNA gene, which supports the 

original tree proposed by Hoogstraal and Aeschlimann, which shows the Amblyomminae 

to be monophyletic. This study shows that, of those Amblyomma species included, A. 

maculatum branched off first, followed by A. tuberculatum (Black et al. 1997). A more 

detailed phylogenetic tree based on the mitochondrial 16S rDNA gene shows A. 

maculatum to be most closely related to A. triste, followed by A. tigrinum (Nava et al. 

2008). This validates, to a degree, the taxonomic confusion between these species during 

the early years of their study. 

Because A. maculatum has been shown to carry R. parkeri, the geographic 

distribution of this tick is important in determining how widespread the rickettsial agent 

may be. This tick has been documented along the Gulf Coast of the United States as early 

as the beginning of the 20th century (Hooker 1908, Hooker et al. 1912) in states such as 



www.manaraa.com

 

14 

Florida, Alabama, Mississippi, and Texas, but also northward into states including 

Georgia, North and South Carolina, Arkansas, Oklahoma, Kentucky, Virginia, and 

Delaware (Bishopp and Trembley 1945, Felz et al. 1996, Cilek and Olson 2000, 

Goldberg et al. 2002, Sumner et al. 2007); it is additionally found in certain countries in 

Central and South America and even in the West Indies (Bishopp and Hixson 1936, 

Bishopp and Trembley 1945, Estrada-Peña et al. 2005). While it has been documented in 

Arizona and California (Bishopp and Trembley 1945, Sumner et al. 2007), this may have 

been a result of translocation from endemic areas. In Mississippi in particular, it was 

found in 17 of the state’s 82 counties (Goddard and Paddock 2005), though we have 

found evidence of this tick in other Mississippi counties as well (Ferrari et al. 2012). 

Within this state, it has been found many miles away from the Gulf Coast (Goddard and 

Norment 1983). 

In addition to its distribution, A. maculatum’s life cycle is important in 

understanding the potential for spread of disease. For example, its locality suggests that it 

is dependent on high temperatures (Bishopp and Hixson 1936); however, its behavior 

suggests otherwise about humidity. Studies show that A. maculatum is more resistant to 

dessication than other ticks including Ixodes scapularis, A. americanum, and 

Dermacentor variabilis (Yoder et al. 2008). This is in accordance with its behavior: A. 

maculatum spends the warmest portion of the day questing and does not need to descend 

from vegetation to rehydrate (Yoder et al. 2008). This may be why it is found out in open 

fields, while most other ticks in the same areas are found in forests or at the forest edge 

(Goddard 1997). Generally, A. maculatum larvae are present and seek hosts 

predominantly from July through November; they can survive between two and five 
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months depending on environmental conditions; temperatures above 70°F and high 

relative humidity are optimal for host-seeking activity (Hixson 1937, 1940). A separate 

and distinct population of A. maculatum in Oklahoma and Kansas has larvae seeking 

hosts earlier in the year, between June and October (Barker et al. 2004, Broce and Dryden 

2005). Larvae take an average 4.5 days to engorge on their host and from nine to twelve 

days to molt (Hooker et al. 1912, Hixson 1937, 1940, Price 1980).  Nymphs are most 

abundant in late winter and spring when temperatures are again above 70°F (Hixson 

1937, 1940). Again, the Oklahoma population seems different in that nymphs are found 

from June through October (Barker et al. 2004). Nymphs in general take slightly longer 

to engorge than larvae, averaging at 5 days and approximately 23 days to complete their 

molt (Hixson 1940, Price 1980). Adult Gulf Coast ticks are primarily host-seeking from 

mid-April to early October, with a peak in late summer (Hixson 1937, 1940, Goddard 

2002); in Oklahoma, they are abundant from February until July (Barker et al. 2004). 

Once on a host, females engorge in 7-14 days and can weigh up to 1 gram once fully 

engorged. One female has been recorded to deposit up to 18 497 eggs (Bishopp and 

Hixson 1936). Males will stay on the host even after mating so that they can find other 

mates (Hooker et al. 1912). Though there is a distinct population in Oklahoma and these 

ticks display slightly different timing in their life cycle, there do not seem to be barriers 

preventing the different populations from mating (Ketchum et al. 2006).   

Vertebrate hosts for A. maculatum 

The larval and nymphal stages typically parasitize cotton rats, rabbits, foxes, 

white-footed mice, bobwhite quail, and meadowlarks (Peters 1936, Hixson 1940, Ellis 

1955, Kellogg and Calpin 1971, Demarais et al. 1987, Clark and Durden 2002, Broce and 
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Dryden 2005). Both larvae and nymphs attach on the head and neck regions of their hosts 

(Hixson 1937). Hixson (1940) speculated that meadowlarks are the most important host 

for both immature stages of the tick. In the same vein, Price (1980) stated that birds seem 

to be the most important hosts for both larvae and nymphs. Studies of meadowlarks 

performed in Texas confirmed that they are indeed a good host for this tick, one study 

finding a minimum of 80% of the birds being infested (Teel et al. 1988, Teel et al. 1998). 

Northern bobwhites have also been identified as good hosts for A. maculatum immature 

stages (Peters 1936, Bishopp and Trembley 1945, Doster et al. 1980, Teel et al. 1998). A 

lark bunting was recently reported to be parasitized by A. maculatum (Robbins et al. 

2010). Adult stages are known to feed on medium to large mammals such as cattle, 

sheep, deer, coyotes, raccoons, dogs, and humans (Hixson 1940, Cooley and Kohls 1944, 

Bishopp and Trembley 1945, Philip and White 1955, White 1955, Demarais et al. 1987, 

Goldberg et al. 2002). In particular, adults often feed inside the external ear of cattle, 

indirectly causing the ears to be swollen and droopy, a condition termed “gotch ear” 

(Bishopp and Hixson 1936, Bishopp and Trembley 1945, Broce and Dryden 2005, 

Edwards 2011, Edwards et al. 2011a); this has also been reported in goats (Edwards et al. 

2011a). Koch and Hair (1975) performed experiments to determine how well larvae and 

nymphs fed on certain hosts. They found that larvae that had engorged on opossums and 

deer mice weighed less than those that fed on cotton rats, eastern woodrats, raccoons, 

black-tailed jackrabbits, and bobwhite quail. With the same potential hosts, engorged 

nymphs weighed more if they had fed on bobwhite quail, cotton rats, eastern woodrats, 

and black-tailed jackrabbits (Koch and Hair 1975). Whether or not each stage exhibits 
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any host preference, however, has not yet been evaluated. This information is important 

in helping to determine potential reservoir hosts for R. parkeri.  

Epidemiological implications of vertebrate hosts 

Identification of vertebrate hosts that act as reservoirs or amplifiers of vector-

borne pathogens is important in understanding the epidemiology of associated diseases. 

The behavior and ecology of one animal host species inherently differs from that of 

another species, and may consequently have varying implications for any 

microorganisms these host species may harbor. For example, the ecological space that a 

species occupies presents any associated ticks with different opportunities than another 

host species might. 

Vertebrate diversity plays an important role in the epidemiology of vector-borne 

diseases. A generalist vector by definition feeds on various animal host species. This may 

be beneficial or detrimental to proliferation of associated pathogens. From one 

perspective, a high diversity of vertebrate hosts may serve to dilute vector-borne 

pathogens in that no one animal species is being exceedingly exploited by the vector in 

question; this is termed the dilution effect (Norman et al. 1999). This is directly relevant 

for human exposure to vector-borne pathogens transmitted by vectors that rely on a 

variety of vertebrate hosts, where humans act as accidental hosts that are generally not 

used by the vector. This high diversity of potential hosts may make humans less likely 

sources of bloodmeals. Another possibility is that, for generalist vectors that have a wide 

variety of vertebrate bloodmeal sources, that vector and any pathogens it harbors may be 

preserved if local extinctions of vertebrate hosts occur (Ostfeld and Keesing 2000). That 

is, high diversity of vertebrates can protect humans and other animals against vector-



www.manaraa.com

 

18 

borne disease transmission, but it may also protect the vector and the disease agent from 

extinction. 

In the case of Lyme disease, it was found that both diversity of vertebrate hosts 

and dominance of competent reservoir hosts are important contributors to the dilution 

effect (Buskirk and Ostfeld 1995, Schmidt and Ostfeld 2001). Avian diversity was 

determined to play a very significant role in human incidence of West Nile virus (Ostfeld 

2009). It is essential to note, however, that animals that are not competent hosts for an 

infectious agent, but that are hosts for the tick vectors, may still be important in the 

ecology of the disease; these hosts have the ability to aid in maintaining the tick 

population. It has been suggested that an amplification effect may also occur, given more 

incompetent hosts, which will increase the vector population and therefore biting rates. 

This is, of course, much more complicated than is detailed here and is beyond the scope 

of this review.  

Bloodmeal analysis in ticks 

Analysis of host DNA in vectors has been performed using a variety of 

techniques. Early studies obtained bloodmeal source information by serological tests such 

as the precipitin test (Weitz 1956, Tempelis 1975, Washino and Tempelis 1983). These 

methods, while useful, often cannot identify hosts beyond the order or family level. With 

the advent of DNA sequencing and improvements in molecular techniques, studies have 

been able to refine the specificity of bloodmeal identification. DNA sequencing alone can 

be useful, though expensive (Kent 2009). Group-specific primers have also been 

developed and proved useful (Kent and Norris 2005); these may, however, amplify 

homologous regions of DNA. Mass spectrometry has also been utilized to identify 
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bloodmeal sources in mosquitoes (Rasgon 2008, Wickramasekara et al. 2008). Molecular 

techniques such as PCR-restriction fragment length polymorphism (RFLP) (Kirstein and 

Gray 1996), heteroduplex analysis (Richards et al. 2006, Simo et al. 2008), and real-time 

PCR (Hurk et al. 2007) have also been used to detect vertebrate host DNA (Kent 2009). 

Reverse line blot hybridization (RLBH), however, is less expensive and has been used in 

several studies analyzing the bloodmeal of ticks (Humair et al. 2007, Moran Cadenas et 

al. 2007, Kent 2009, Scott et al. 2012). 

The RLBH technique was first developed to type group A streptococci using emm 

gene polymorphisms (Kaufhold et al. 1994). The technique was soon adopted for various 

applications in vector-borne diseases, including detection of different genospecies of tick-

borne pathogens such as Borrelia burgdorferi (Rijpkema and Bruinink 1996, Kurtenbach 

et al. 2001) and identification of vertebrate hosts of blood-feeding arthropods (Kirstein 

and Gray 1996). The latter has been performed by targeting the 12S rRNA gene (Cadenas 

et al. 2007, Humair et al. 2007) and the 18S rRNA gene (Pichon et al. 2003, Pichon et al. 

2005) of vertebrates. In addition, some have used a region of the cytochrome b gene as a 

target (Kirstein and Gray 1996).  

Spotted fever group rickettsiae in vertebrates 

There is an adequate foundation of literature demonstrating on what hosts A. 

maculatum is found, consequently providing sufficient evidence for pursuing 

investigations into the role of specific vertebrates in R. parkeri maintenance. Some 

spotted fever group (SFG) serological work has been done with both domestic and wild 

animals; however, because of the cross-reactivity in the SFG, these assays cannot be used 

to make species-specific conclusions. A study conducted in Mississippi found sera from a 
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variety of mammals to be positive (15/365) when tested against antigen from R. rickettsii 

(Norment et al. 1985). In Brazil, horses and dogs have been found with antibodies that 

react with R. rickettsii antigen (Sangioni et al. 2005). Also in Brazil, capybaras have been 

reported to have sera reactive with R. bellii and R. parkeri antigens (Pacheco et al. 2007). 

In Texas, jackrabbits were also found to harbor antibodies reactive with R. rickettsii 

(Henke et al. 1990). Cattle tested in Mississippi were found to have low antibody titers to 

SFG rickettsiae (Edwards et al. 2011b). In Brazil, one jaguar (n=10) was reported as 

having serum reacting strongest with R. parkeri antigen when tested against 6 different 

Rickettsia spp. Additionally, an A. triste from the same jaguar was PCR positive for R. 

parkeri (Widmer et al. 2011). 

Original experimental infections conducted in the 1930s demonstrated that a 

febrile illness developed in guinea pigs when inoculated with R. parkeri (Parker 1939), 

and these findings were supported by later work (Philip and White 1955, Goddard 2003). 

It has also been demonstrated that infection in guinea pigs with living R. rickettsii offers 

protection against R. parkeri and vice versa. This was not the case when using formalin-

killed vaccines of the organisms (Lackman et al. 1965). Experimental infection studies 

showed that opossums (Didelphis aurita) and cattle seroconverted when inoculated with 

R. parkeri. Some animals (2/6 calves and 1/2 opossums) also became transiently 

rickettsemic (Horta et al. 2010, Edwards et al. 2011b). Cattle (n=80) inoculated with R. 

conorii were reported to be rickettsemic for up to 32 days (Kelly et al. 1991). The longest 

rickettsemia observed after exposure to R. rickettsii in experimental conditions was 3 to 4 

weeks, in opossums (Bozeman et al. 1967). Using inbred laboratory mice, details of a 

rickettsial infection have been characterized. A high dose (2.25 x 105) R. conorii was 
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observed to establish a disseminated endothelial infection in mice on dpi 1, followed by 

clinical signs by dpi 4 and death dpi 5 or 6. These mice developed meningoencephalitis 

due to vascular injury and interstitial pneumonia. A low dose (2.25 x 103) was shown to 

produce signs of illness in the mice by dpi 5 with full recovery by dpi 10 (Walker et al. 

1994). Another study performed with inbred laboratory mice found R. parkeri to be most 

concentrated in the heart, lung, liver, and spleen tissues. Intradermally inoculated mice 

developed characteristics eschars, while intravenously inoculated mice exhibited facial 

edema and splenomegaly (Grasperge et al. 2012b). Dogs inoculated with R. conorii were 

demonstrated to develop transient rickettsemia up to dpi 10 (Kelly et al. 1992). In 

Louisiana, 13% of shelter dogs tested (12/93) were positive by PCR for R. parkeri 

(Grasperge et al. 2012a).  

Tick vectors as reservoirs of rickettsiae 

For some Rickettsia species, there are no recognized vertebrate reservoirs or 

amplifiers. This suggests that the arthropod vector maintains the rickettsiae in the 

ecosystem. Transovarial transmission has been demonstrated for several SFG rickettsiae 

including R. parkeri (Goddard 2003), R. africae (Kelly and Mason 1991), and R. 

helvetica (Burgdorfer et al. 1979). This characteristic implies the role of reservoir, as the 

arthropods are therefore maintaining the rickettsiae in their population. Aponomma 

hydrosauri is a tick feeding on reptilian hosts and has been identified as the vector and 

reservoir of R. honei (Stenos et al. 2003). In general, because Rickettsia spp. exhibit 

transovarial transmission in their arthropod vectors, they do not have the constraints of an 

obligate vertebrate host reservoir (Azad and Beard 1998). 
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There are aspects of arthropod-rickettsial interactions and interspecific 

competition within tick vectors that are not well understood. Studies performed with D. 

andersoni and R. rickettsii over several tick generations reported unexpectedly high 

mortality rates and reduced egg viability (Burgdorfer and Brinton 1975, Niebylski et al. 

1999). In addition, once infected with R. montana, D. variabilis ticks were shown to be 

refractory to transovarial transmission with R. rhipicephali and vice versa (Macaluso et 

al. 2002), although coinfections have been documented at low rates (Carmichael and 

Fuerst 2006, Stromdahl et al. 2008, Wikswo et al. 2008, Varela-Stokes et al. 2011). With 

the largely unknown influences of tick-rickettsial interactions and interspecific 

competition, it is important to bear in mind the possibility of ticks acting not only as 

vectors of pathogens but also as reservoirs. 

Characteristics of Rickettsia species 

Rickettsiae are members of the Alpha-proteobacteria, a class of bacteria which 

gave rise to mitochondria sometime after 2 billion years ago (Sagan 1967, Madigan and 

Martinko 2006). The order Rickettsiales is currently divided into three families: 

Rickettsiaceae, Anaplasmataceae, and Holosporaceae (Azad et al. 2009). The family 

Rickettsiaceae is composed of the genera Rickettsia and Orientia (Dumler et al. 2001).  

The Rickettsia are obligate intracellular parasites (Raoult and Olson 1999, 

Madigan and Martinko 2006). Though parasitic, they have retained many independent 

metabolic functions such as small molecule synthesis (those to be used in 

macromolecular synthesis) and electron transport phosphorylation. They are passed from 

one vertebrate to another by arthropod vectors, because they cannot survive long outside 

a host (Madigan and Martinko 2006). Confounding this are reports of aerosol 
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transmission of R. rickettsii (Saslaw and Carlisle 1966, Saslaw et al. 1966, Raoult and 

Olson 1999). Regardless, coevolution between the bacteria and their vectors has led to a 

strong relationship highlighted by proficient multiplication, transstadial and transovarial 

transmission, and long-term maintenance (Azad and Beard 1998).  

Members of the genus Rickettsia are small, measuring about 0.7-1.0µm long by 

0.3-0.5µm wide (Hackstadt 1996). They are gram-negative and therefore have typical 

inner and outer cell membranes separated by a layer of peptidoglycan. Their 

lipopolysaccharide layer has not been shown to have any endotoxic activity associated 

with it (Hackstadt 1996). Virulence factors identified include OmpA, OmpB, putative 

adhesin orthologs, and RickA (Pornwiroon et al. 2009). Although no type IV secretion 

system proteins have been identified to date in R. parkeri, they are known for all other 

Rickettsia genomes that have been analyzed; it is likely R. parkeri has the same system in 

place. 

Traditionally, the genus Rickettsia has been divided into three groups: the typhus 

group, the scrub typhus group, and the spotted fever group (Roux and Raoult 2000). The 

typhus group was composed of Rickettsia typhi, R. prowazekii, and R. canadensis (Weiss 

and Moulder 1984). Only one species was placed in the scrub typhus group – Orientia 

(Rickettsia) tsutsugamushi (Tamura et al. 1995). The eventual dissolution of the scrub 

typhus group was based on prominent morphological differences and analysis of the 16S 

rRNA gene (Ohashi et al. 1995, Tamura et al. 1995). The remaining Rickettsia species 

made up the spotted fever group (Sekeyova et al. 2001). Eventually, alternate groupings 

were proposed, including an organization of four groups: the typhus group, the spotted 

fever group, an ancestral group, and a transitional group (Walker et al. 2008, Valbuena 
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and Walker 2009). New phylogenies are now based on molecular data more than on 

morphology and clinical presentation, as was historically used for rickettsiae.  

The most well-defined groups are the typhus group (TG) and the spotted fever 

group (SFG), differentiated based on antigenicity of their lipopolysaccharides (Hackstadt 

1996). Rickettsia parkeri has been placed in the SFG along with R. rickettsii and several 

other species that are of unknown pathogenicity (Walker et al. 2008). Members of this 

group are both transovarially and transstadially (between stages of ticks) transmitted in 

their tick vectors as well as via tick bite to their vertebrate hosts (Raoult and Olson 1999, 

Goddard 2003, Walker et al. 2008). Their ability to be transovarially and transstadially 

transmitted may be attributed to their propensity to infect the salivary glands, midgut, and 

ovaries of ticks (Goddard 2003, Valbuena and Walker 2009). Fournier et al. (1998) 

proposed that the SFG be further divided into three subgroups based on analysis of the 

ompA gene: the R. conorii complex and two other clusters. Rickettsia parkeri was found 

to be most closely related to R. africae, strain S, R. sibirica, and ‘R. mongolotimonae’ 

(Fournier et al. 1998). In fact, in one study using restriction fragment length 

polymorphisms (RFLP), the authors were not able to differentiate between R. parkeri and 

R. africae (Eremeeva et al. 1994). Authors of another paper proposed combining R. 

conorii, R.parkeri, R. rickettsii, and R. sibirica together in one group, while R. australis 

and R. akari would be in the second group, and the remaining non-pathogenic species (R. 

amblyommii, R. rhipicephali, and R. montana) would be in the third group (Andersson et 

al. 1999). Recently, however, Apperson et al. suggested that R. amblyommii may actually 

also cause human disease (Apperson et al. 2008), thus calling into question the validity of 

classification based on perceived pathogenicity status. Yet another study, however, 
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evaluated taxonomic positions of these organisms and suggested that R. conorii, R. 

parkeri, R. sibirica, and R. africae belong in a phylogenetic sub-group together (Goddard 

2009). In 2004, a new member was identified (Blair et al. 2004) and later added to the 

SFG, “Candidatus Rickettsia andeanae” (Jiang et al. 2005). The pathogenic status of this 

novel rickettsia is yet to be determined, but it has been detected in ticks, specifically A. 

maculatum, removed from humans (Paddock et al. 2010, Jiang et al. 2012). Its presence 

in the Gulf Coast tick may have important implications for the A. maculatum-R. parkeri 

system. This novel rickettsia occurs sympatrically with R. parkeri (Fornadel et al. 2011, 

Varela-Stokes et al. 2011) and coinfection in A. maculatum has been reported (Varela-

Stokes et al. 2011, Ferrari et al. 2012). 

The SFG is a unique group based on both genetics and characteristics. Most 

rickettsial species currently included in this group are associated with ticks (Walker et al. 

2008); the remaining species are R. akari and R. felis, transmitted by mites and fleas, 

respectively (Raoult and Olson 1999). These include R. rickettsii, R. parkeri, R. 

amblyommii, R. rhipicephali, R. montanensis, and R. peacockii, among others (Walker et 

al. 2008).  Phylogenetically, members of the SFG consistently cluster separately from the 

TG. Species in this group have a genome between 1200 and 1400 kb, with few 

exceptions (Roux and Raoult 1993, Hackstadt 1996). The guanine+cytosine content of 

their DNA is typically higher than that of TG members – 32-33% as opposed to 29-30% 

(Hackstadt 1996). Genes of interest (mainly for species differentiation) are the 17kDa 

(surface antigen gene), gltA (citrate synthase gene), rompA (rickettsial outer membrane 

protein A gene), and rompB (rickettsial outer membrane protein B gene) (Roux et al. 

1997, Fournier et al. 1998, Roux and Raoult 2000). Rickettsia parkeri groups 
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phylogenetically with R. africae and strain S using rompB as a target (Roux and Raoult 

2000). Considering gltA, R. parkeri is most similar to R. sibirica, ‘R. mongolotimonae’, 

‘R. slovaca’, strain S, R. conorii, Astrakhan fever rickettsia, R. africae, and Thai tick 

typhus rickettsia (Roux et al. 1997). Targeting the 17 kDa antigen gene, R. parkeri groups 

closely with R. rickettsii and R. conorii (Stenos et al. 1998). Of those tested, all SFG 

rickettsiae react with monoclonal antibodies to the lipopolysaccharide-like antigen from 

R. rickettsii (Anacker et al. 1987). Indeed, there are high rates of serological cross-

reactivity within all groups of rickettsiae (Parker 1939, Valbuena and Walker 2009). 

Pathogenesis of rickettsiae 

Rickettsial agents, and specifically most members of the SFG, are obligate 

intracellular bacteria found in a variety of ticks. Many SFG rickettsiae are carried by 

ixodid ticks, but not all are reported agents of disease (Azad and Beard 1998, Raoult and 

Olson 1999). Those that are, preferentially infect endothelial cells and need to expend 

energy to do so (Moulder 1985). To enter into a host cell, rickettsiae attach to the protein-

dependent receptor Ku70 on the host cell membrane; binding is achieved using the outer 

membrane protein (Omp) B, found on the surface of all Rickettsia species, and results in 

recruitment of further Ku70 receptors to the host cell membrane (Walker 2007). The 

OmpA protein has also been recognized as important for R. rickettsii in adhering to and 

entering host cells (Li and Walker 1998); this and the OmpB protein have been identified 

in R. parkeri (Pornwiroon et al. 2009). On the other hand, R. peacockii, which is closely 

related to R. rickettsii, cannot synthesize the OmpA protein due to premature stop codons 

in the ompA gene (Baldridge et al. 2004). This possibly relates to the nonpathogenic 

status of R. peacockii and supports the idea that OmpA is important in cell-to-cell spread 
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of pathogenic rickettsiae. SFG rickettsiae use their own metabolic activity to enter host 

cells by provoking cytoskeletal rearrangements and recruitment of Arp2/3 to polymerize 

actin in the host cell such that the rickettsiae can enter, move within, and exit the cell 

(Walker 2007). A recent study determined that R. parkeri enters arthropod cells by 

pathways involving Wiskott-Aldrich syndrome protein (WASP)-family verprolin-

homologous protein (WAVE) nucleation-promoting factor and Arp2/3 complexes, 

leading to actin nucleation (Reed et al. 2012). Inside, SFG rickettsiae quickly escape the 

phagosome, possibly by way of phospholipase A2 (Walker et al. 2003) or phospholipase 

D (Renesto et al. 2003) or a combination of the two, and enter the cytosol where they 

highjack nutrients, energy, and components for growth (Walker et al. 2003). 

Characteristic of SFG rickettsiae, replication is possible not only in the cytoplasm, 

but also within the nucleus (Raoult and Roux 1997). They acquire metabolic energy by 

coupling ADP phosphorylation to the oxidation of glutamate, using ATP from the host 

(Moulder 1985). Inside host cell cytoplasm, the bacteria replicate by binary fission, 

filling the cell until it lyses (Madigan and Martinko 2006), releasing anywhere from 100 

to 1000 new infectious units per host cell (Moulder 1985). Peak intracellular numbers of 

rickettsiae are achieved 3 to 5 days after infection (Moulder 1985). Lysis of the host cell 

may be due to simple restrictions of physical space, or it may be a result of the activity of 

phospholipase A, an enzyme implicated in entry of R. prowazekii and R. rickettsii 

(Moulder 1985). SFG rickettsiae also spread from one host cell to another via an actin-

based motility, much like Listeria and Shigella species (Hackstadt 1998). Indeed, the 

ability to form actin tails has been reported as characteristic of SFG rickettsiae, including 

R. parkeri; this is not the case for TG rickettsiae (Heinzen et al. 1993). To be 
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immediately toxic, however, TG rickettsiae need to attach to host cells and release 

phospholipase A (Moulder 1985); this has not been documented for SFG rickettsiae 

(Hackstadt 1998).  

History of R. parkeri and current knowledge 

In 1939, a man named R. R. Parker published a report documenting isolation of a 

rickettsia from Gulf Coast ticks (Amblyomma maculatum) collected in Texas (Parker 

1939). The organism was determined to cause mild disease for some laboratory animals 

including guinea pigs, monkeys, rabbits, white rats, and especially Sawatch meadow 

mice (Microtus pennsylvanicus modestus). The organism was referred to as “the 

maculatum agent” and the disease it caused was termed “maculatum infection” (Parker 

1939). It was subsequently isolated from A. maculatum collected in Georgia in 1938 and 

in Mississippi in 1948 and 1955 (Lackman et al. 1949, Philip and White 1955). 

Eventually, the rickettsia adopted the name of its discoverer, becoming R. parkeri 

(Lackman et al. 1949, Lackman et al. 1965). 

Almost seven decades after its first isolation, R. parkeri was implicated as a 

human pathogen. In August of 2002, a man presented to a clinic in Virginia with a fever, 

mild headache, myalgia and arthralgia, and general malaise. His lower extremities also 

had multiple eschars, or small areas of necrosis. He was unresponsive to amoxicillin-

clavulanic acid and cephalexin. As a result of extensive laboratory tests, the patient was 

diagnosed with rickettsialpox (caused by R. akari and transmitted by mites) and treated 

with doxycycline. Within two days, the fever, arthralgias, and myalgias had resolved. 

Biopsy and serum specimens had been sent to the Centers for Disease Control and 

Prevention (CDC; Atlanta, GA) during the patient evaluation. The patient’s serum was 
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determined to be reactive with both R. rickettsii and R. akari. DNA analysis determined 

the causative agent to be R. parkeri (Paddock et al. 2004). 

Since the first diagnosis of disease due to R. parkeri, there have been about 

twenty additional human cases reported. The second documented case occurred in 

Mississippi (Finley et al. 2006), and the third report was of a man in Virginia (Whitman 

et al. 2007). Since then, probable and confirmed cases have been reported throughout the 

Southeastern United States (Figure 1). Cases of R. parkeri rickettsiosis have also been 

identified in parts of Latin America including Argentina (Romer et al. 2011) and Uruguay 

(Conti-Diaz et al. 2009). 

Currently, R. parkeri is understood to be most closely related to R. africae, Strain 

S, R. sibirica, and R. conorii (Fournier et al. 1998, Andersson et al. 1999, Roux and 

Raoult 2000, Goddard 2009). There are four AluI sites in the citrate synthase gene, and 

the RsaI and PstI profiles in the 190kDA gene for R. parkeri and R. africae are identical 

(Eremeeva et al. 1994). Rickettsia parkeri’s RsaI band pattern in the 120kDA gene is 

identical to that of R. africae and R. sibirica (Eremeeva et al. 1994).  These genetic 

similarities are mirrored in the clinical characteristics of human infection with R. parkeri, 

R. africae, and R. conorii. 

Clinical aspects of R. parkeri rickettsiosis 

Though first isolated in 1937, R. parkeri was only recognized as a cause of human 

disease in 2002 (Paddock et al. 2004). Whether or not R. parkeri also prefers to infect 

endothelial cells is not known; however, there is circumstantial evidence for this cell 

tropism in human case descriptions (Paddock et al. 2004, Walker 2007). The first case 

report of R. parkeri infection in a human described perivascular infiltrates containing 
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rickettsia-infected cells, suggesting endothelial involvement (Paddock et al. 2004). In 

addition, R. parkeri infection is clinically similar to African tick bite fever (R. africae), 

boutonneuse fever (R. conorii), and Rocky Mountain spotted fever (R. rickettsii), the 

agents of which also infect endothelial cells (Raoult and Paddock 2005, Valbuena and 

Walker 2009). In fact, in 2005, serum samples from some cases diagnosed as RMSF were 

shown to react with R. parkeri antigens suggesting that R. parkeri causes mild forms of 

an RMSF-like disease (Raoult and Paddock 2005).  

Observations of disease caused by R. parkeri were originally made in studies 

concerning guinea pigs. They were found to develop a mild fever and, in the case of the 

males, a swollen and pink scrotum (Parker 1939, Lackman et al. 1949, Goddard 2003). 

The fever, if present, was found to last between one and four days, while edema and 

redness in the scrotum persisted from one up to eight days (Parker 1939). Rabbits 

injected with the “maculatum disease” agent have not shown clinical signs of infection 

and show low antibody response (Lackman et al. 1949). 

In humans, infection with R. parkeri is characterized by fever and an eschar at the 

bite site (Goddard 2004, Paddock et al. 2004) and the disease has been variously referred 

to as maculatum disease, American boutonneuse fever, or simply Rickettsia parkeri 

rickettsiosis (Goddard 2004). Human infection occurs as a result of rickettsiae 

multiplying specifically at the site of tick attachment (Valbuena and Walker 2009). The 

eschar is of particular interest as it is a clear distinction between R. parkeri and R. 

rickettsii infection (RMSF cases have not reported eschars). Additionally, RMSF patients 

may present with a petechial rash, while patients with R. parkeri infection do not and 

instead may have rashes characterized by vesicles or pustules (Paddock et al. 2008, 
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Walker et al. 2008). Of the confirmed and probable cases to date, thirteen patients 

became sick between late July and early September. All of these patients had low to 

moderate fevers that lasted from two to eleven days. Fourteen cases were associated with 

eschars, thirteen patients had rashes, and ten experienced arthralgia (Paddock et al. 2008, 

Cragun et al. 2010). Lymphadenopathy has also been associated with some cases 

(Paddock et al. 2008). Cases have presented similar to the initial case, but have ranged in 

severity suggesting variable levels of virulence in different strains of R. parkeri (Paddock 

et al. 2008).    

Gaps in current knowledge of R. parkeri ecology 

Up to this point, studies of wildlife hosts for A. maculatum as potential amplifiers 

or reservoirs of R. parkeri have not been reported in the literature. Some work has been 

conducted with cattle (Edwards et al. 2011b), mice (Grasperge et al. 2012a), guinea pigs 

(Goddard 2003), and, in South America, opossums (Horta et al. 2010). This has not, 

however, addressed potential or actual hosts for immature stages of A. maculatum. 

Although there is documentation of hosts for all stages of A. maculatum (Hixson 1937), 

the extent to which this tick feeds upon each species has only been partially addressed 

(Koch and Hair 1975). As of yet, such information has not been complemented by 

laboratory experimental infections with R. parkeri in these animals. The dissertation 

presented here aims to address these issues. 
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Abstract 

Amblyomma maculatum Koch, 1844 is the primary vector in the United States for 

Rickettsia parkeri, an emerging human pathogen, as well as Hepatozoon americanum, a 

protozoan causing disease in canines. We evaluated the host preference and feeding 

success of immature A. maculatum for three potential host species, the Carolina anole 

(Anolis carolinensis), the Bobwhite quail (Colinus virginianus), and the Hispid cotton rat 

(Sigmodon hispidus). To determine host preference, ticks were given an option of two 

different hosts at a time. No ticks fed on anoles in the host preference study and no 

significant difference in preference could be determined for rats compared to quail. In a 

separate experiment to study feeding success, we placed ticks directly onto ten individual 
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animals of these same species. No ticks fed on anoles. Larvae did not statistically differ 

in number of days to engorge when feeding on rats (5.7 d) compared to quail (5.6 d). 

Nymphs, however, took significantly longer to engorge on rats (8.2 d) than on quail (7 d). 

Engorged larvae from rats and quail were not statistically different in weight, while 

nymphs that engorged on rats were significantly heavier (15.8 mg) than those from quail 

(13.2 mg). Engorged larvae and nymphs did not significantly differ in their molting 

success between hosts. Results of this study suggest that anoles were not good hosts for 

immature stages of A. maculatum. No clear host preference was identified for quail or 

cotton rats, although differences in time-to-engorgement and engorged specimen weights 

were noted. 

Keywords Amblyomma maculatum, feeding, hosts, cotton rat, quail 

The Gulf Coast tick, Amblyomma maculatum, is an ixodid tick found throughout 

the southeastern United States and in some countries in Central and South America. 

Historical studies from over 50 years ago report that the immature stages feed on small 

mammals and ground-dwelling birds (Ellis, 1955, Peters, 1936, Hixson, 1940). In 

general, this has included mammals such as cotton rats and rabbits, and birds such as the 

eastern meadowlark and bobwhite quail. Adults are found on larger mammals such as 

deer and cattle (Cooley & Kohls, 1944, Hixson, 1940). A previous comparison of avian 

and mammalian host species for immature A. maculatum found that significant 

differences existed in the feeding success of these ticks (Koch & Hair, 1975). For 

example, engorged larvae and molted nymphs tended to have a greater weight, and earlier 

drop off time when feeding on quail, whereas nymphal ticks were significantly heavier as 

engorged nymphs and molted adults after having fed on cotton rats, compared to quail 
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(Koch & Hair, 1975). In all cases, opossums were poor hosts and tick feeding success on 

other species tested (Eastern woodrat, black-tailed jack rabbit, raccoon, and deer mouse) 

was variable. Reptiles were not evaluated in the Koch and Hair study (Koch & Hair, 

1975), and, in general, have not been examined very closely in tick ecology studies. 

However, although A. maculatum has not been documented from reptiles, other ixodid 

tick species have; for example, Ixodes scapularis immature stages will feed on skinks and 

other reptiles (Apperson et al., 1993, Oliver et al., 1993). Under experimental conditions, 

however, larvae have been found to prefer and more successfully feed on white mice as 

compared to skinks (James & Oliver, 1990).   

Amblyomma maculatum is known to bite humans and is a vector of the recently 

recognized human pathogen, Rickettsia parkeri (Goddard, 2002, Parker, 1939, Paddock 

et al., 2004) and of the canine pathogen, Hepatozoon americanum (Ewing et al., 2002b, 

Kocan et al., 2000).  It is also an experimentally competent vector of Ehrlichia 

ruminantium, the causative agent of heartwater, a foreign animal disease in the United 

States (Uilenberg, 1982). This tick’s wide host range and vector potential make the 

ecology and epidemiology of any pathogens associated with it more complex, meriting 

studies of the vector-host-pathogen system. Furthermore, although the number of studies 

involving R. parkeri in particular has recently increased, none have, to our knowledge, 

specifically evaluated the natural history of the organism in A. maculatum. While ticks 

themselves are the main reservoirs of many Rickettsia spp., vertebrate hosts such as 

rodents and larger mammals may also play a role as amplifiers or additional reservoirs. 

For example, in the United States, the meadow vole (Microtus pennsylvanicus) has been 

implicated as an amplifier of R. rickettsii, while in Brazil the capybara and opossums are 
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thought to play that role (Labruna, 2009, Souza et al., 2009, Bozeman et al., 1967, 

Burgdorfer, 1988). It is unknown, however, what role vertebrate hosts used by A. 

maculatum have in the natural maintenance of R. parkeri. Thus, revisiting the basic 

ecology of A. maculatum would be a step towards understanding the epidemiology of R. 

parkeri.  

This study was performed to better understand potential and actual hosts of A. 

maculatum. We chose two known hosts for A. maculatum from two Classes (Aves and 

Mammalia), and a third host from a Class (Reptilia) not known to be utilized by this tick 

species.   Our results help elucidate the role of these representative species in the life 

cycle of A. maculatum, specifically for immature stages of this tick. 

Materials and Methods 

All A. maculatum larvae and nymphs used in this study were obtained from a 

laboratory-reared colony at Texas A&M University. Ticks were kept in humidity 

chambers at 90% relative humidity (RH) until used in the study within two months of 

receipt from Texas A&M University. Three potential host species, each representing a 

different Class of the Phylum Chordata, were used for both studies: cotton rats (Sigmodon 

hispidus; Harlan Laboratories, Indianapolis, IN), bobwhite quail (Colinus virginianus; 

Pollard Quail Farm, Mathiston, MS), and Carolina anoles (Anolis carolinensis; Carolina 

Biological Supply, Burlington, NC). For the duration of each trial, individual animals 

were housed in wire cages positioned on blocks over trays of water. The animals were 

given food and water ad libitum. Between studies, animals were kept in a main housing 

area. Quail were kept together in large cages and anoles were together in aquaria; and rats 

were kept in separate standard rodent cages. Each study was performed twice, once using 
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larval ticks and once using nymphal ticks. All experiments were approved by the 

Institutional Animal Care and Use Committee at Mississippi State University; IACUC 

protocol #08-039. 

Host preference study 

Using a paintbrush, immature ticks (n=50) were placed into the center of a PVC 

tube connecting two cages each with a different animal species. All three possible 

combinations of hosts (rat – anole, quail – rat, anole – quail) were used, with three 

replicates. Therefore, six animals of each species were used each time. At time zero, ticks 

were placed in the middle of PVC tubes and allowed to find a host, during which time 

cages were moved every six hours throughout the room to eliminate any possible airflow 

or temperature variables. After 24 hours, tubes were removed and any ticks left inside 

them were counted and eliminated from the study. Trays of water under each cage were 

then cleaned and searched daily for fallen engorged ticks. Engorged ticks were counted 

from each animal tray and taken back to the lab for placement in humidity chambers. 

Larval ticks were allowed to feed for seven days; nymphs for ten days. Unpaired t-tests 

were used for statistical analysis of the results. 

Feeding success study 

In a separate experiment, immature ticks (n=50 for larvae and n=40 for nymphs) 

were given no option of host and placed directly onto the animals’ bodies, in the case of 

cotton rats and quail. In the case of the anoles, tick placement directly onto their bodies 

was attempted, but proved to be unsuccessful as ticks failed to stay on the skin of anoles. 

In this case, an open 0.5ml tube with the ticks was placed into each cage with an anole. 
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Ten individuals of each animal species were used. Cage setup was identical to the host 

preference study; however, PVC tubes were not used to connect cages. Each animal 

species was kept in a separate room. Again, trays of water were checked daily for fallen 

engorged ticks. Larvae were again allowed to feed for seven days; nymphs fed for ten 

days. All engorged ticks were taken back to the lab to be weighed and allowed to molt. 

Larvae from each individual animal were pooled and mean weights recorded. The 

nymphs, however, were individually weighed prior to placement in humidity chambers to 

await molting. Time to engorgement and percent molting success were recorded for both 

larval and nymphal ticks. Tick weights, days to engorgement, and molting success were 

analyzed using unpaired t-tests. 

Results 

Host preference study 

Few engorged ticks were recovered from animal trays (17/450 larvae and 11/450 

nymphs); most were found unfed in the trays of water. This may have reflected problems 

maintaining adequate humidity levels, which improved in later studies. However, 

although numbers were low, some trends were seen. Neither larval nor nymphal ticks fed 

on anoles. In addition, more ticks fed on quail (7 larvae, 10 nymphs) than on rats (4 

larvae, 7 nymphs). When given a choice between with an anole and a quail, seven larvae 

and four nymphs fed on quail. When given a choice between a cotton rat and an anole, 

six larvae and two nymphs fed on rats. When a quail and a cotton rat were present, three 

larvae and three nymphs fed on quail and one larva and two nymphs fed on a rat. These 

results, however, were not statistically significant due to low numbers. 
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Feeding success study 

Unfortunately, during the time of these experiments, one quail and one anole died 

due to causes unrelated to tick feeding; these animals were eliminated from the study. 

Results of the feeding success experiment are shown in Table 1. No larvae or nymphs fed 

on anoles. There were not enough engorged larvae to compare weights statistically. In 

addition, neither the percent molting success nor days to engorge was statistically 

different (P>0.05). The data for engorged nymphal weights for rats and quail appeared to 

be distributed normally according to qq plots. Using a pooled t-test, there was a strongly 

significant difference (F=1.03; df=115; P<0.0001) between weights of nymphs engorged 

on quail versus rats at the 5% significance level, with ticks engorging on rats being 

heavier. Nymphs engorged significantly sooner (F=1.53; df=117; P<0.05) on quail than 

on cotton rats. Percent molting success of nymphs was not statistically different among 

host species (P>0.05). 

Discussion 

Results from these studies suggest that Carolina anoles do not serve as hosts for 

A. maculatum larvae or nymphs in nature. This is in contrast to the natural history of 

other ixodid ticks, such as I. scapularis, which do feed on reptiles as immatures, both 

under laboratory conditions and in nature (Apperson et al., 1993, Oliver et al., 1993, 

James & Oliver, 1990). Our studies support previous reports that A. maculatum larvae 

and nymphs feed on bobwhite quail and cotton rats, and also suggest that reptiles do not 

play a role in this tick’s life cycle. This has important implications for agents of disease 

harbored by A. maculatum, such as R. parkeri. In documenting the epidemiology of such 

pathogens, future studies should not focus efforts on reptiles, though other Amblyomma 
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species are found on reptiles in the southeastern United States (Nelder & Reeves, 2005, 

Corn et al., 2011). 

There were some noted differences between quail and cotton rats as hosts. While 

significant differences in host preference could not be determined in our studies, the 

characteristics of nymphal feeding on cotton rats compared to quail were statistically 

different. Our results support data from Koch and Hair (1975) regarding differences in 

feeding success of A. maculatum nymphs on various hosts.  In that paper, proposed 

reasons for what may cause ticks to feed more successfully on certain host species 

included differences in quantity and quality of ingested bloodmeal between the hosts 

(Koch & Hair, 1975).  While these factors may not directly affect pathogen acquisition 

and transmission and they were not addressed in that study, they may still influence the 

maintenance and transmission of a tick-borne pathogen indirectly. 

In conclusion, our experiments offer information towards better understanding the 

life cycle of A. maculatum and, ultimately, the ecology and epidemiology of pathogens 

such as R. parkeri. Further studies are warranted to determine the extent to which A. 

maculatum vertebrate hosts, such as cotton rats and bobwhite quail, are involved as hosts 

of pathogens found in this tick. 
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Table 3.1 Feeding success of larval and nymphal Amblyomma maculatum on bobwhite 
quail and cotton rats. 

 quail (n=9) rat (n=10) 

Larvae (n=50)     

  Total no. engorged (range per animal) 
  avg # per animal (range) 

22 (0-5) 
2.4 (0-5) 

43 (2-8) 
4.3 (2-8) 

  Mean weight (range) 2.3 (2-3) mg 2.5 (1-5) mg 

  Mean days to engorge (range) 
 
s to engorge 

5.6 (5-6) 5.7 (5-6) 

  Percent molting success 86 77 

Nymphs (n=40)     

  Total no. engorged (range per animal) 
  avg # per animal (range) 

67 (0-17) 
7.4 (0-17) 

52 (0-13) 
5.2 (0-13) 

  Mean weight (range) 13.2 (7-19) mg* 15.8 (7-21) mg* 

  Mean days to engorge (range) 7 (5-8)* 8.2 (6-9)* 

  Percent molting success  48 40 

Results are not reported for anoles as no ticks fed on them. 
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Abstract 

Rickettsia parkeri is a recently recognized human pathogen primarily associated 

with the Gulf Coast tick, Amblyomma maculatum, with immature stages reported from 

wild vertebrates. To better understand the role of vertebrates in the natural history of this 

bacterium, we evaluated small mammals and ground-dwelling birds for evidence of 

infection with R. parkeri or exposure to the organism. We sampled small mammals 
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(n=39) and passerines (n=47) in both north-central and southeast Mississippi, while 

northern bobwhite (Colinus virginianus) samples (n=31) were obtained from farms in 

central Mississippi. Blood from all sampled animals was tested using PCR for spotted 

fever group rickettsiae (SFGR) and for antibodies to SFGR using R. parkeri antigen. 

Ectoparasite samples were removed from animals and included mites, lice, fleas, and 

immature ticks. Of 42 small mammal samples collected, seven were positive for 

antibodies to SFGR; none tested positive by PCR for DNA of SFGR. Of 47 passerine 

blood samples collected, none were positive for DNA of SFGR by PCR nor did any show 

serologic evidence of exposure. Finally, none of 31 northern bobwhite samples tested 

were positive for SFGR DNA, while seven were seropositive for rickettsial antibodies. 

Detection of seropositive rodents and quail suggests a role for these host species in the 

natural history of SFGR, possibly including R. parkeri, but the extent of their role has not 

yet been elucidated. 

Keywords Gulf Coast tick, rickettsiae, birds, small mammals, ectoparasites 

Introduction 

Several tick-borne diseases have recently increased in incidence and geographic 

distribution, warranting classification as “emerging” infectious diseases (Gratz 1999, 

Fritz 2009). Rickettsiosis caused by Rickettsia parkeri, a member of the spotted fever 

group rickettsiae (SFGR), is a recently recognized tick-borne disease, first reported in a 

human in 2004 (Paddock et al. 2004). Although these diseases mainly affect humans, 

wildlife may play an important role in their persistence in nature.  This role may include 

serving as a reservoir or amplifier of infection or as a primary host in the tick life cycle 

and as a dead-end for the pathogen.  
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Vertebrate hosts play a role in the natural maintenance of some rickettsial 

organisms. The causative agent of Rocky Mountain spotted fever (RMSF), Rickettsia 

rickettsii, has been reported to circulate at high enough levels in Colombian and golden-

mantled ground squirrels, meadow mice, and snowshoe hares to infect naïve feeding ticks 

(Burgdorfer et al. 1966). In South America, capybaras and opossums (Didelphis spp.) 

have been implicated as amplifiers of this organism as well (Labruna 2009). Rickettsia 

typhi is maintained by a rat-flea life cycle (Azad 1990) and has also been found in spleen 

tissue samples from opossums (Didelphis marsupialis; Williams et al. 1992), suggesting 

that this opossum is a good host for proliferation of the bacterium. In Mississippi, 

mammals such as raccoons, opossums, cottontail rabbits, and white-tailed deer have been 

shown to have antibodies to SFGR (Norment et al. 1985, Castellaw et al. 2011). 

Identifying vertebrates that are part of tick-borne agent life cycles provides important 

information about the ecology and epidemiology of such pathogens relevant to veterinary 

and public health sectors.   

Rickettsia parkeri is a member of the Alpha-proteobacteria, in the Family 

Rickettsiaceae, and is phylogenetically closest to R. africae (Fournier et al. 1998, Roux 

and Raoult 2000). This organism, like other SFGR, requires a vertebrate or invertebrate 

host for both proliferation and survival as it uses energy from its host cells (Weiss 1973). 

Because R. parkeri was only recently recognized as a pathogen after almost 70 years of 

being considered non-pathogenic (Paddock et al. 2004, Parker 1939), our understanding 

of its natural history is minimal. Although the main tick vector is Amblyomma maculatum 

(Parker 1939, Philip et al. 1978), the role played by vertebrate hosts of this tick in the 

cycle of R. parkeri is not known. Transovarial and transstadial forms of transmission are 
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important in perpetuating the life cycle for many rickettsiae (Azad and Beard 1998), thus 

immature stages of the ticks may be more important than adults in spreading infection to 

other ticks and naïve vertebrate hosts. Transovarially infected larvae have the potential to 

spread the infection to the vertebrate hosts they feed on, and transstadially to nymphal 

stages, which again have the ability to transmit the pathogen to their vertebrate hosts. 

Larval and nymphal Gulf Coast ticks are generally found on ground-dwelling animals 

(Bishopp and Hixson 1936, Hixson 1940), thus our objective was to evaluate wild birds 

and small mammals for exposure to and infection with SFGR such as R. parkeri. 

Ultimately, these data should contribute to an understanding of the natural history of 

SFGR in vertebrate hosts.  

Materials and Methods 

Small mammal samples 

Sites in Mississippi for trapping small mammals were chosen based on the 

presence of A. maculatum as identified by previous studies (Goddard and Norment 1983, 

Goddard and Paddock 2005) or property owners. Trapping was performed at two 

locations (Figure 1) in winter 2009 and spring 2010, using Sherman live-traps. Traps 

were baited using peanut butter and oats and placed in a grid with 10 meters spacing 

between traps. Traps were checked starting at 0700-0800 the following morning and 

checked every two hours for the remainder of the day. Trapped small mammals were 

processed on site. Blood (0.3mL maximum) was collected from the saphenous vein using 

heparin-coated capillary tubes. The animal was then combed for ectoparasites as 

thoroughly as possible without causing undue stress, which were collected and placed 

into 70% ethanol. All mammals were then released at their original capture sites. 
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Avian samples 

Passerines were caught in spring and summer 2009 using mist-nets in two north-

central sites (Starkville: +33° 29’ 6.85”, -88° 46’ 41.13”; Mathiston: +33° 31’ 44.21”, -

89° 7’ 54.97”) and at one coastal site (Moss Point: +30° 23’ 56.58”, -88° 27’ 28.99”) 

(Figure 1). Blood samples were collected from captured birds via jugular venipuncture 

(0.3mL maximum) with syringes interiorly coated with heparin. The birds’ heads were 

then examined for any attached ticks before being released at their capture sites. 

Sampling passerines was done with a Scientific Collection Permit from the Mississippi 

Department of Wildlife, Fisheries, and Parks (U.S. Fish and Wildlife Service permit 

MB027041-1). 

We collected samples from two northern bobwhite farms in north-central 

Mississippi that housed quail in conditions amenable to ticks; specifically, birds were 

housed in runs on the ground with wire fencing. One farm was in Maben (+33° 34’ 

37.64”, -89° 3’ 7.82”) and the other near Starkville (+33° 22’ 34.05”, -88° 41’ 30.98”). 

Blood was collected from the jugular vein as done for passerines. Quail were checked for 

ectoparasites around their heads then released. 

DNA Extractions 

Small mammal blood samples were extracted using GE Healthcare’s illustra 

blood genomicPrep Mini Spin kit (GE Healthcare, Piscataway, NJ). Avian blood was 

extracted using the QIAamp DNA Blood Midi kit (Qiagen Inc., Valencia, CA). In all 

cases, a 50µl volume of blood was extracted following manufacturer’s protocols. 
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Polymerase Chain Reaction (PCR) 

A nested PCR assay targeting the rickettsial outer membrane protein A (rompA) 

gene specific for SFGR was used with primers 190-70 and 190-701 for the primary 

reaction and primers 190-FN1 and 190-RN1 for the secondary reaction (Sumner et al. 

2007). Rickettsia parkeri DNA extracts (Tate’s Hell strain) and non-template water 

controls were included in the nested PCR assay. 

Indirect Fluorescent Antibody (IFA) test 

Plasma from heparinized blood samples was tested to determine if SFGR-specific 

antibodies were present. Samples were screened at a 1:64 dilution using fluorescein 

isothiocyanate (FITC) anti-rat (KPL, Gaithersburg, MD) and FITC anti-mouse (KPL, 

Gaithersburg, MD) as secondary antibodies for rat samples and for other small mammal 

samples, respectively. FITC anti-bird (KPL, Gaithersburg, MD) was used for passerine 

samples and FITC anti-chicken (KPL, Gaithersburg, MD) was used for northern 

bobwhite samples. End-point titrations were determined on positive samples using two-

fold serial dilutions ranging from 1:64 to 1:1024. Diluted samples were placed on R. 

parkeri antigen coated 12-well slides, incubated for 35min at 37°C, then washed in PBS 

followed by water. Appropriate FITCs were added to the wells and slides were again 

incubated at 37°C for 35min. Finally, slides were washed, counterstained with 

Eriochrome black T, and air-dried before applying VECTASHIELD® (Vector 

Laboratories, Inc., Burlingame, CA) and a coverslip. 
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Ectoparasite Identification 

Samples were first sorted by Order (or Subclass Acari for mites) and then 

identified to species by specialists: Dr. Lance A. Durden at Georgia Southern University; 

Dr. Jerome Goddard at Mississippi State University; Dr. Hans Klompen at Ohio State 

University; and Dr. Richard Robbins of the Armed Forces Pest Management Board. 

Vouchers were deposited in the Mississippi Entomological Museum, Mississippi State 

University. 

Results 

Sample collection 

Twenty-four samples were obtained from rodents trapped in Moss Point in winter 

2009 (n=12) and spring 2010 (n=12) (Table 1). Small mammal samples obtained in 

Starkville were from animals trapped in association with a Mississippi State University 

course in winter 2009 (n=14) and independently in spring 2010 (n=1). Forty-seven 

passerines were caught by mist-net and sampled (May through July 2009) from Starkville 

(n=31), Moss Point (n=8), and Mathiston (n=8). Twenty northern bobwhite samples were 

obtained from the farm near Starkville (May 2010) and eleven were collected from the 

farm in Maben (November 2010).  

PCR Results 

No small mammal, passerine, or northern bobwhite samples tested positive for 

SFGR DNA by PCR.  Positive controls showed bands of appropriate size on agarose gels. 

 



www.manaraa.com

 

65 

IFA Results 

Five rodent samples were seropositive. Two hispid cotton rats (Sigmodon 

hispidus) from Moss Point tested positive in winter 2009. Also at Moss Point, two cotton 

rats and one Peromyscus sp. tested positive in spring 2010. No passerines tested positive 

for SFGR antibodies; however, seven northern bobwhites from Starkville were 

seropositive. No northern bobwhites from the farm in Maben were seropositive. Endpoint 

titrations of positive samples are shown in Table 2.  

Ectoparasite Samples 

Four Orders of ectoparasites were found on rodents, including two species of 

ticks, three genera of mites, one sucking louse species, and two flea species (Table 3). All 

specimens were mounted for identification. No ectoparasites were found on birds or 

shrews.  

Discussion 

Cotton rats and northern bobwhite quail serve as important vertebrate hosts for 

immature stages of A. maculatum (Hixson 1937), and thus may play a role in the natural 

history of the A. maculatum-transmitted pathogen R. parkeri. However, our study 

provides evidence of exposure to SFGR as a group, which includes organisms such as R. 

rickettsii that uses Dermacentor variabilis as a primary vector. Therefore, these animals 

may have been exposed to different rickettsiae, particularly because both D. variabilis 

and A. maculatum were collected from rodents. On the other hand, a recent study 

reported 28% of unfed A. maculatum ticks from Florida and Mississippi to be infected 

with R. parkeri, representing a range of 11 to 40% in the individual counties sampled 
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(Paddock et al. 2010). This is in stark contrast to reported prevalence of generally less 

than 5% of Dermacentor ticks being infected with R. rickettsii (Burgdorfer et al. 1975, 

Linnemann et al. 1980, McDade and Newhouse 1986, Wikswo et al. 2008, Stromdahl et 

al. 2011).  

While no rickettsial DNA was detected in blood samples, some animals showed 

strong antibody responses to R. parkeri antigen (specifically, two rodents from Moss 

Point had endpoints of 1:512). This suggests that these animals were exposed to SFGR 

likely sometime within the previous two months. Experimental infections using rabbits, 

guinea pigs, and mice suggested that those animals generally show a peak antibody 

response between 10 and 20 dpi. The authors noted that a high dose (5.6 x 106 plaque-

forming units) was needed to elicit a response from the mice (Anacker et al. 1979). 

Samples from animals in the current study that showed higher titers for SFGR antibodies 

(rodents at Moss Point) were collected during peak activity times for both larval and 

nymphal A. maculatum – late fall and early spring (Hixson 1937, Hixson 1940). 

Results from PCR tests did not reflect those of IFA assays, but rickettsial DNA 

can be present without being in circulation. Rickettsiae are obligate intracellular parasites 

infecting endothelial cells (Pinkerton 1942). These cells are in general not found 

circulating throughout the body, although they can enter the bloodstream as a result of 

damage to the endothelium (Silverman 1984, Valbuena and Walker 2009). Other 

rickettsiae have been detected in wildlife by PCR, but at very low rates. For example, R. 

helvetica DNA was identified in eight of 112 Sika deer samples in Japan (Inokuma et al. 

2008). The PCR tests performed in this study did not detect rickettsial DNA in the blood; 

the organism may have been present in low numbers, or not circulating in the animals at 
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the time samples were taken. Experimental infections performed in our laboratory 

resulted in isolation of R. parkeri from cotton rat tissues including skin, blood, and spleen 

during acute infection but not chronic infection (Moraru et al., unpublished data). The 

current study did not incorporate euthanasia and necropsy of field animals, and so did not 

allow for collection of such samples, which would be important to test whether R. parkeri 

occurs in tissues other than blood. It would also be of interest in future studies to perform 

methodical checks for ectoparasites such that some could be tested for rickettsial DNA. 

Cotton rats and northern bobwhite have shown evidence of exposure to SFGR and 

they are known hosts for A. maculatum, the primary vector of R. parkeri (Parker 1939, 

Sumner et al. 2007). If they do prove to play a role in the maintenance of R. parkeri, then 

this would have implications in the epidemiology of this pathogen. To gain a better 

understanding of the ecology of this system, future studies with these hosts should 

include serosurveys to detect R. parkeri-specific antibodies, testing of their ectoparasites 

for R. parkeri, and experimental infections with R. parkeri.   
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Table 4.2 Plasma titrations of rodents and bobwhite quail analyzed by 
immunofluorescent antibody test. 

 No. positive (total 
sampled) 

Titer Range 

Sigmodon hispidus 4 (24) 1:64 – 1:512 
Peromyscus sp. 1 (2) 1:512 
Colinus virginianus 7 (20) 1:64 – 1:256 

 
Rodents listed were trapped at Moss Point in Mississippi. All quail samples were 
obtained from a farm outside of Starkville in Mississippi.
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Figure 4.1 Map of Mississippi showing vertebrate blood sampling sites for small 
mammals, passerines, and quail. 

Circles show where both mammals and passerines were collected, diamonds represent 
locations of quail farms sampled, and the four-point star indicates where only passerines 
were examined. 
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Abstract 

Background 

Amblyomma maculatum is the primary vector for Rickettsia parkeri, a spotted 

fever group rickettsia (SFGR) and human pathogen. Cotton rats and quail are known 

hosts for immature A. maculatum; however, the role of these hosts in the ecology of R. 

parkeri is unknown.  
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Methods 

Cotton rats and quail were inoculated with low or high doses of R. parkeri (strain 

Portsmouth) grown in Vero cells to evaluate infection by R. parkeri in these two hosts 

species. Animals were euthanized 2, 4, 7, 10, and 14 days post-injection (dpi) and blood, 

skin, and spleen samples were collected to analyze by Vero cell culture and polymerase 

chain reaction (PCR). In a second trial, cotton rats and quail were inoculated with R. 

parkeri and nymphal A. maculatum ticks were allowed to feed on animals. Animals were 

euthanized on dpi 14, 20, 28, 31, and 38 and blood and tissues were collected for 

serology and PCR assays. Fed ticks were tested for R. parkeri by PCR and Vero cell 

culture.  

Results 

Rickettsia parkeri was isolated in cell culture and detected by PCR in skin, blood, 

and spleen tissues of cotton rats in the initial trial dpi 2, 4, and 7, but not in quail tissues. 

In the second trial, no ticks tested positive for R. parkeri by PCR or cell culture.  

Conclusions 

These studies demonstrate that viable R. parkeri rickettsiae can persist in the 

tissues of cotton rats for at least 7 days following subcutaneous inoculation of these 

bacteria; however, quail are apparently resistant to infection. Rickettsia parkeri was not 

detected in nymphal ticks that fed on R. parkeri-inoculated cotton rats or quail, 

suggesting an alternate route of transmission to naïve ticks.  

Keywords: Rickettsia parkeri, experimental infection, cotton rat, quail 
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Background 

Spotted fever group rickettsiae (SFGR) are vector-borne organisms often causing 

disease in humans. Rickettsia rickettsii, the causative agent of Rocky Mountain spotted 

fever (RMSF), is the best studied and most virulent of the SFGR [1]. The pathogenic 

potential of many other SFGR, however, is not well-documented, particularly for recently 

recognized rickettsial species. Further, while the genetic relatedness of known and 

emerging rickettsiae [2-4] and their presence in certain animal populations [5-7] have 

been described, basic ecology and epidemiology are less well-understood.  

Despite the initial recognition of R. parkeri in 1937 [8], studies of this SFGR only 

increased substantially after 2004, when the first case of human infection was reported 

[9]. Subsequent seroprevalence surveys demonstrated certain animal species, including 

opossums, capybaras, and dogs, to be naturally exposed to R. parkeri, or a closely related 

SFGR [10-12].  

Our understanding of the natural history of R. parkeri is mainly limited to its 

distribution in its primary tick vector, Amblyomma maculatum, commonly known as the 

Gulf Coast tick. Rickettsia parkeri has been detected in 12%-43% of questing adult Gulf 

Coast ticks collected across the southeastern United States [13-15], suggesting this 

Rickettsia species is efficiently transmitted from the nymphal stage to the adult stage. It is 

unknown, however, if immature A. maculatum acquire the microorganism predominantly 

by feeding from rickettsemic vertebrate hosts, through effective transovarial and 

transstadial transmission, or possibly both routes of transmission. Immature Gulf Coast 

ticks feed on small mammals such as cotton rats and ground-dwelling birds, including 

meadowlarks and northern bobwhite [16-18]. Adult stages parasitize larger mammals 
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including cattle, goats, deer, dogs, and occasionally humans [19]. Experimental infection 

studies showed that opossums (Didelphis aurita) and cattle seroconverted when 

inoculated with R. parkeri. Some animals (2/6 calves and 1/2 opossums) also became 

transiently rickettsemic [20, 21]. It is not known, however, if one or more vertebrate hosts 

act as reservoirs or amplifying hosts for R. parkeri, as described previously for Rickettsia 

rickettsii, the agent of Rocky Mountain spotted fever [22-24]. 

This study was performed to assess the infectivity of R. parkeri to cotton rats and 

bobwhite quail, two recognized vertebrate hosts for immature stages of A. maculatum, 

and to investigate the ability of immature ticks to acquire R. parkeri from these R. 

parkeri-exposed hosts.  

Methods 

Animal and tick sources 

Cotton rats (Sigmodon hispidus) were purchased from Harlan Laboratories 

(Indianapolis, IN). Northern bobwhite quail were purchased from P & L Crowley Farm 

(Maben, MS).     

Ticks were purchased from Texas A&M University (TAMU) and Oklahoma State 

University (OSU). Those from the latter institution have been previously found to be 

infected with “Candidatus Rickettsia andeanae”, while ticks from the TAMU colony are 

not known to be positive for this organism (Moraru, unpublished data). Nymphal ticks 

obtained from both institutions were DNA extracted individually and PCR amplified 

using primers 16S+2 and 16S-1 to target the 16S rDNA gene as confirmation that tick 

DNA was extracted [25]. Extractions were then tested by PCR amplification targeting 

SFGR-wide rompA and “Ca. R. andeanae”-specific rompA gene fragments. The former 
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was done using primers 190-70 and 190-701 for the primary reaction and primers 190-

FN1 and 190-RN1 for the secondary reaction [26]; the latter using primers Rx-190-F and 

Rx-190-R [14].  

Culture for injections 

Rickettsia parkeri was grown in Vero cell culture supplemented with minimum 

essential media (MEM) containing 10% fetal bovine serum. A low passage (P4 and P5) 

isolate of R. parkeri (Portsmouth) was used for all animal infections. Infected cultures 

were harvested when at least 90 percent of the Vero cells were infected, as determined by 

cell counts using 50µl in a hemocytometer. 

Experimental exposure 

The initial trial consisted of eleven quail and eleven cotton rats. All animals were 

pre-screened for SFGR antibodies via immunofluorescent antibody (IFA) testing 

(described in detail below). Five quail and five cotton rats received low dose injections of 

R. parkeri (1000 infected Vero cells in 0.2ml of culture media). Another set of five quail 

and five cotton rats were injected with a high dose of the organism (10 000 infected Vero 

cells in 0.2ml). Percent infectivity of Vero cells was estimated by cytospin, and cell 

counts were performed using a hemocytometer. Animals were injected subcutaneously, at 

the nape of the neck on cotton rats and in the right leg of quail. One individual of each 

species served as negative controls and were injected with 10 000 uninfected Vero cells 

in a 0.2ml volume. Four of twenty animals—one low dose quail, one low dose rat, one 

high dose quail, and one high dose rat—were numbered and randomly selected from each 

group for euthanasia at 2, 4, 7, 10, and 14 days post injection (dpi). The controls were 
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euthanized on dpi 14. Animals to be euthanized were numbered and selected at random, 

within their dose assignment, and euthanized using carbon dioxide.  

Upon euthanasia, blood was collected from the animals via intracardiac puncture. 

A 250µl volume of whole blood from each animal was placed into individual flasks of 

confluent Vero cells.  Skin from the injection site and spleen tissue samples were 

collected on necropsy. Half of each tissue sample was put into Vero cell culture 

(described in cell culture section below), and half was frozen at -20°C until DNA 

extractions and PCR assays could be performed.  

Experimental tick infestation 

The second trial consisted of eleven cotton rats and eleven quail. One cotton rat 

and one quail were injected with 10 000 uninfected Vero cells in 0.2ml of culture media. 

The remaining ten individuals of each species received injections of R. parkeri infected 

Vero cell culture (10 000 cells in 0.2ml each). On dpi 4, nymphal A. maculatum ticks 

were placed on each of the animals. Two cotton rats and two quail had OSU ticks (n=50), 

while all remaining animals (including controls) received TAMU ticks (n=65). Trays 

underneath each animal’s cage were examined daily for fallen engorged ticks. All fallen 

ticks were placed in humidity chambers (90% RH) and allowed to molt. Ticks were 

allowed to feed for 13 days, after which a blood sample was taken from the animals for 

IFA testing (dpi 17).  

Animals were euthanized on dpi 20, 24, 31, and 38. Upon euthanasia, a blood 

sample was collected via intracardiac puncture. At necropsy, tissues including skin from 

the original injection site, liver, spleen, kidney, and scrotal tissue (male rats only) were 

collected and stored at -20°C until DNA extraction and PCR testing could be performed. 
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All experiments were approved by the Institutional Animal Care and Use Committee at 

Mississippi State University (IACUC 10-067). 

Indirect Fluorescent Antibody (IFA) test 

Plasma from the blood samples was used to determine if SFGR IgG antibodies 

were present. Samples were screened at a 1:64 dilution. A 1:60 dilution of fluorescein 

isothiocyanate (FITC) anti-rat IgG (H+L) (KPL, Gaithersburg, MD) was used as a 

secondary antibody for rat samples; FITC anti-chicken (H+L) (KPL, Gaithersburg, MD) 

was used for the quail at a dilution of 1:275. Cotton rats and bobwhite quail known from 

previous IFA screening studies to be seronegative or seropositive for SFGR were used as 

controls.  

Cell culture of vertebrate tissues and ticks 

Tissues, of approximately 1cm2, from animals in the first trial were triturated, 

using a sterile scalpel blade, into 250µl of MEM + 10% FBS and added to 25cm2 flasks 

of Vero cell culture. All flasks (3 different tissues per individual animal) received 10µl 

penicillin-streptomycin (10000U/ml penicillin and 10mg/ml streptomycin).  

In the second trial, ticks that successfully molted after feeding on R. parkeri-

inoculated animals were pooled from each individual host. For example, all ticks that fed 

on quail 1 were put into one culture flask. Ticks were prepared for culture following a 

previously described protocol [27]. Briefly, they were put through a series of disinfecting 

washes. Each pool of ticks was placed into a 15ml tube with 10ml of a wash solution. For 

each wash, the tubes were vortexed for 3min, after which the liquid was aspirated out. 

Washes were, in order: hydrogen peroxide, 70% ethanol, 20% household bleach, and 
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sterile PBS. After this series of washes, ticks were cut using a sterile scalpel blade in a 

sterile petri dish, one at a time. Each tick was placed onto 0.2ml cell culture media and 

bisected longitudinally. One half was retained and placed at -20°C for subsequent DNA 

extraction and PCR testing. The other half was triturated in the media in the petri dish 

and then placed in a 25cm2 culture flask along with any other triturated ticks that had fed 

on the same animal. Each flask also contained 100µl of penicillin-streptomycin 

(10000U/ml penicillin and 10mg/ml streptomycin) and 5µl of amphotericin (250µg/ml).  

Two days after tissues and ticks were placed in culture, flasks were emptied and 

fresh media was added. Flasks were then monitored weekly for three to six weeks for 

infection using cytospin preparations and acridine orange staining. Briefly, slides were 

allowed to air-dry and then were placed in methanol for 10min. Slides were then flooded 

with acridine orange for 2-3min.  

DNA Extractions 

Rodent blood samples were extracted using GE Healthcare’s illustra blood 

genomicPrep Mini Spin kit (GE Healthcare, Piscataway, NJ). Quail blood was extracted 

using the QIAamp DNA Blood Midi kit (Qiagen Inc., Valencia, CA). In all cases, 50µl of 

blood was extracted following the kit protocols as supplied by the manufacturer was 

followed.  

Cell culture and ticks halves were DNA extracted using GE Healthcare’s illustra 

tissue and cells genomicPrep Mini Spin kit and following the manufacturer’s protocols 

(GE Healthcare, Piscataway, NJ). A 200µl volume was extracted from all harvested 

cultures. Tick halves were triturated into extraction buffer using a new sterile scalpel 

blade for each individual sample. Final elution volumes were 200µl.   
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Polymerase Chain Reaction (PCR) 

A nested PCR program targeting a segment of the rickettsial outer membrane 

protein A (rompA) gene was used with primers 190-70 and 190-701 for the primary 

reaction and primers 190-FN1 and 190-RN1 for the secondary reaction [26]. Rickettsia 

parkeri DNA extracts (Portsmouth) and non-template water controls were included in the 

assays. 

To test tick samples, this rompA PCR was preceded by a reaction using primers 

16S+2 and 16S-1 to target the 16S rDNA gene as confirmation that tick DNA was 

extracted [25]. Ticks were tested with primers Rx-190-F and Rx-190-R, specific for “Ca. 

R. andeanae” and using a single reaction PCR assay [14]. 

Results 

Rickettsia parkeri experimental infection in vertebrates 

The pre-inoculation serum samples obtained from all cotton rats and quail 

revealed no evidence of antibodies reactive with SFGR at a dilution of 1:64 or higher. 

Cotton rats and quail euthanized on dpi 2 and 4 were not seropositive; however, animals 

euthanized on dpi 7, 10, and 14 were seropositive. Control animals were seronegative. No 

blood samples tested positive by PCR at the time of euthanasia. No tissues tested directly 

by PCR were rompA positive.  

Results of PCR assays are shown in Table 1. Briefly, rickettsial DNA was 

detected in the skin sample of a cotton rat at dpi 4, and also in cultures of blood, skin, and 

spleen from cotton rats. Rickettsia parkeri was re-isolated from blood, skin, and spleen 

tissues from cotton rats, but not from any quail tissues. 
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Experimental infections with ticks 

In the series of experiments where R. parkeri-infected animals were exposed to 

nymphal A. maculatum, 2 R. parkeri-exposed rats died, due to undetermined causes 

before completion of the tick feeding period (one on dpi 13 and one on dpi 15). Time of 

death allowed for blood to be obtained from only one of these rats. The control rat died 

on dpi 24, also from unknown causes apparently unrelated to the study; blood and spleen 

samples were collected and tested by PCR and found to be negative for SFGR DNA.  

All animals were seronegative on pre-screen by IFA. Controls remained 

seronegative throughout the study. On dpi 17, 8 of 9 rats and 5 of 10 quail were positive 

for SFGR antibodies at a 1:64 dilution. No blood sample at this time-point tested positive 

by PCR. Two quail (one sampled dpi 31 and the other on dpi 38) were seropositive (1:64) 

at time of euthanasia. All rats were seropositive (1:64) at time of euthanasia. No blood 

samples or other animal tissues tested positive by PCR at any time point. 

A total of 61 engorged ticks were recovered from the quail (0-12) and cotton rats 

(0-8), representing a range of 0-7 ticks per animal and resulting in 13 culture flasks (1-7 

ticks per animal). All cell cultures and ticks tested negative by PCR for rickettsial DNA. 

OSU ticks remained positive for “Ca. R. andeanae” after feeding on animals.  

Discussion 

This study demonstrates that needle-inoculated cotton rats can maintain infection 

with R. parkeri in various tissues for at least 4-7 days. Nonetheless, R. parkeri appears to 

be rapidly cleared by the immune system of cotton rats and even more quickly in 

bobwhite quail. Previous work with cotton rats indicated that R. rickettsii was cleared 

within 24 hours of infection [23].  
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 Although some rickettsiae have vertebrate reservoirs or amplifiers [28], in other 

cases, the tick vector is implicated as a reservoir of certain rickettsiae. Rickettsia honei 

occurred in 63% of Aponomma hydrosauri ticks collected (n=46), but in no lizard hosts 

(n=17) [29]. Infection rates of A. maculatum with R. parkeri are also high. In Virginia, 

rates of infection with R. parkeri greater than 40% in A. maculatum have been reported 

[15, 30]. One study reports this rickettsia in 28% of A. maculatum ticks sampled in 

Mississippi and Florida, with a maximum infection rate of 40% in Jackson County, 

Mississippi [13]. Another study found a prevalence of 15.2% in A. maculatum collected 

throughout Mississippi [31]. Additionally, wild-caught rodents and bobwhite quail from 

farms in Mississippi have shown serological evidence of exposure to SFGR (Moraru et 

al., in press). 

It appears that the ecology of R. parkeri is not dependent upon cotton rats or quail 

as reservoirs. While some feeding ticks may acquire the SFGR by feeding on recently 

infected animals such as cotton rats, there may be another mode of horizontal 

transmission occurring. Although our samples were small, our results suggest cotton rats 

and quail do not effectively transmit R. parkeri to naïve ticks. However, we also 

performed needle inoculations, which may result in different infection dynamics than 

feeding infected ticks on naïve animals. Transmission via co-feeding, from an infected 

tick to a naïve tick feeding nearby on the host, has been demonstrated with R. massilae 

and R. conorii [32, 33], suggesting the tick vectors may be acting as reservoirs. This 

would mean a less important role for vertebrate hosts in terms of pathogen maintenance. 

This merits further investigation in the context of R. parkeri. 
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Conclusions 

This study adds valuable information to our limited knowledge of the dynamics of 

R. parkeri in avian and mammalian hosts. Cotton rats may serve briefly as sources of 

infection for feeding ticks, and there may be other vertebrate species that also have this 

potential. While did not show direct evidence of infection with R. parkeri, they may still 

have the potential to infect naïve A. maculatum ticks. With the increasing number of 

recognized R. parkeri cases in humans, it is important to identify potential sources of 

infection. Many questions remain and the ecology of this tick-borne rickettsia still needs 

to be examined thoroughly, both with surveys of wild animals and under experimental 

settings.  
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Table 5.1 PCR results from experimental infection with R. parkeri in cotton rats via 
injection. 

 dpi dpi 4 dpi 7 dpi 10 dpi 14 

 Low High Low High Low High Low High Low High 

Skin - / +* - / + - / + + / + - / + - / - - / - - / - - / - - / - 

Blood - / - - / - - / + - / + - / - - / - - / - - / - - / - - / - 

Spleen - / - - / - - / - - / + - / - - / - - / - - / - - / - - / - 

Tissues were PCR tested and placed in Vero cell culture. “Low” and “high” indicate the 
dose the animal received (10000 or 100000 infected R. parkeri Vero cells). Days post 
injection (DPI) across the table represent time of euthanasia and tissue collection. 
* Signs before the slash indicate tissue results, and signs after the slash signify results of 
cultures. 
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CHAPTER VI 

UTILITY OF REVERSE LINE BLOT HYBRIDIZATION FOR BLOODMEAL 

ANALYSIS IN ARCHIVED AMBLYOMMA MACULATUM 

Abstract 

The Gulf Coast tick, Amblyomma maculatum, is a significant pest of livestock and 

a vector for human and canine pathogens. Of primary importance is the role of A. 

maculatum in transmission of Rickettsia parkeri, a recently recognized human pathogen 

causing spotted fever rickettsiosis in the Western hemisphere. In this study, we 

investigated the utility of reverse line blot hybridization (RLBH) for identifying previous 

hosts fed on by adult A. maculatum in order to further evaluate the role of these hosts in 

the natural history of R. parkeri. Genomic DNA extracts from individual adult A. 

maculatum that were collected using drag cloth from sites in Mississippi during 2008-

2010 were used in a polymerase chain reaction (PCR) to amplify a region of the 

mitochondrial 12S rRNA gene. PCR products were subjected to RLBH using 

oligonucleotide probes specific for Classes Mammalia, Aves, and Reptilia, Orders 

Rodentia and Artiodactyla, and the genus Homo. We detected human DNA and cross-

contamination in our samples, similar to what has been previously reported for this 

technique. As primers for the gene of interest amplify from a broad range of vertebrates, 

and human DNA contamination is not uncommon, precautions should be taken during 



www.manaraa.com

 

93 

initial DNA extraction. This manuscript discusses various approaches taken to optimize 

the use of RLBH for our samples. 

Keywords: bloodmeal detection, reverse line blot, Amblyomma maculatum, 12S 

rDNA 

Introduction 

Tick-borne pathogens are of medical and veterinary importance worldwide 

(Jongejan & Uilenberg, 2004). Identifying potential vertebrate reservoirs or amplifiers of 

tick-borne pathogens often requires capturing wild hosts, which can prove difficult, 

hazardous, inefficient and costly. Molecular techniques now exist that allow for 

identification of traces of vertebrate host DNA in field-collected ticks and circumvent the 

initial need for handling wild hosts.  

Reverse line blot hybridization (RLBH) was first developed to type group A 

streptococci using emm gene polymorphisms (Kaufhold et al., 1994). The technique has 

since been adopted for various applications in vector-borne diseases, including 

identification of vertebrate hosts of blood-feeding arthropods (Kirstein & Gray, 1996). 

Various genes have been targeted for this purpose, such as the 12SrRNA gene (Humair et 

al., 2007, Cadenas et al., 2007), the 18S rRNA gene (Pichon et al., 2003, Pichon et al., 

2005), and the cytochrome b gene (Kirstein & Gray, 1996). Molecular techniques such as 

PCR-restriction fragment length polymorphism (RFLP) and heteroduplex analysis have 

also been used to detect vertebrate host DNA (Kent, 2009). RLBH, however, is less 

expensive and somewhat less complicated in mastering (Kent, 2009). 

The ecology of the Gulf Coast tick, Amblyomma maculatum (Sumner et al., 2007, 

Parker, 1939), has been only generally described (Hixson, 1940, Teel et al., 2010, 
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Bishopp & Hixson, 1936, Hixson, 1937). For example, immature stages feed on ground-

dwelling birds such as meadowlarks and bobwhite quail and on small mammals including 

cotton rats (Hixson, 1940, Ellis, 1955, Kellogg & Calpin, 1971, Peters, 1936, Barker et 

al., 2004). Identifying primary vertebrate hosts used by immature A. maculatum would 

prove useful for further investigating what vertebrate species might serve as amplifiers or 

reservoirs of the human pathogen it transmits, Rickettsia parkeri.  Gulf Coast ticks have a 

geographic range spanning the Gulf and Atlantic coasts inward, with Mississippi in the 

center of the range along the Gulf Coast, and a state where human disease with R. pakeri 

has been reported (Paddock et al., 2008, Finley et al., 2006). 

Rickettsia parkeri was first identified in 1939 (Parker, 1939), although it was only 

in 2004 that it was reported to cause human disease(Paddock et al., 2004).  Its only recent 

association with human disease left R. parkeri largely unstudied for over six decades. 

Like other members of the spotted fever group of rickettsia, it likely undergoes 

transovarial transmission, relying on ticks as a primary reservoir, and possibly vertebrate 

hosts as additional reservoirs or as amplifiers in nature. As vertebrate reservoir hosts have 

been described for other rickettsiae (Labruna, 2009), identifying the primary vertebrate 

species used by A. maculatum would be important for future studies investigating the role 

of these vertebrates in directly supporting the natural cycle of R. parkeri. This study was 

performed to determine host diversity of nymphal A. maculatum in Mississippi by 

analyzing bloodmeal remnants in unfed adult A. maculatum.  
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Methods 

Sample collection 

Unfed adult A. maculatum (n=707) were collected as part of a previous study 

using drag sampling from ten sites throughout the state of Mississippi between 2008 and 

2010 (Ferrari et al., 2012). Ticks collected during that study were stored in 70% ethanol 

until DNA extraction. Of these ticks, 698 had amplifiabletick 16S rDNA as per a 

pervious protocol (Black & Piesman, 1994), and were available for further testing. Blood 

and tick samples used for positive controls originated from previous experimental studies 

in our laboratory (Moraru et al., unpublished data). These included partially engorged 

adult female A. americanum fed on white-tailed deer (Odocoileus virginianus), adult A. 

maculatum fed on cotton rats (Sigmodon hispidus) and bobwhite quail (Colinus 

virginianus) as nymphs, and whole blood from these animals. 

DNA extraction 

Genomic DNA was extracted from whole ticks using the illustra tissue and cells 

genomicPrep kit (GE Healthcare) as part of a previous study (Ferrari et al., 2012). Blood 

samples used as positive controls were extracted using either the illustra blood 

genomicPrep Mini Spin kit (GE Healthcare, Piscataway, NJ) or the QIAamp DNA Blood 

Midi kit (Qiagen Inc., Valencia, CA). 

Polymerase chain reaction (PCR) 

For detection of vertebrate DNA, extracts were first subjected to a touchdown 

PCR targeting a ~145bp fragment from the 12S rRNA gene, based on protocol by 

Humair et al. (2007). The reaction was carried out in 50µl volumes, using 1.5mM MgCl2, 
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0.2mM dNTPs, 0.8µM of each primer, and 1.25 U TaqDNA polymerase (Promega, 

Madison, WI). In later trials, a glycerol-free TaqDNA polymerase (B-Bridge 

International Inc., Cupertino, CA) was used. Ten microliters of DNA extraction samples 

were used for each reaction. Briefly, the reaction began with a 3 min denaturation step 

held at 94°C, followed by one cycle of 94°C for 20 s, 60°C for 30 s, and 72°C for 30 s. 

The touchdown cycles began with 20 s at 94°C, followed by an annealing step of 30 s at 

67°C and decreasing 1°C per cycle until this reached 52°C, and finally 30 s at 72°C. This 

was followed by 25 cycles of 94°C for 20 s, 52°C for 30 s, and 72°C for 30 s. The final 

extension step was 7 min at 72°C. PCR products were run on a 2% agarose gel stained 

with ethidium bromide and visualized under ultraviolet light to confirm amplification. 

Products were then stored at -20°C until use in RLBH. DNA extracts of blood samples 

from white-tailed deer or wild boar (Sus scrofa) were used as positive controls in PCR 

assays for the 12S rRNA gene. Non-template water controls were included in PCR assays 

amplifying fragments of both the 12S rRNA gene and tick mitochondrial 16S rRNA 

gene. 

Reverse line blot hybridization (RLBH) 

We chose previously published oligonucleotide probes for bloodmeal analysis by 

RLBH (Humair et al., 2007). The RLBH protocol was adapted based on previous studies, 

primarily by Humair et al., as well as other groups (O'Sullivan et al., 2011, Scott et al., 

2012, Humair et al., 2007). Probes were diluted from 2pM to 500pM to determine 

optimal concentrations and were bound to a biodyne-C membrane activated with 16% 

w/v 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC). The membrane was 

briefly rinsed with nanopure water and then placed in a MiniSlotTM apparatus 
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(Immunetics Inc., Boston, MA) on top of 3 wet filter papers. Here, a 150µl volume of 

each diluted oligonucleotide probes was loaded (one into each lane) and incubated for 

1min before being aspirated off of the membrane. Any empty lanes were marked with 

diluted pen ink. The membrane was then placed in 100mM NaOH for 8 min gently on a 

shaker, followed by an incubation step in 2xSSPE/0.1%SDS for 5 min at 60°C. 

Afterwards, we transferred the membrane to 20mM EDTA (pH 8) for 20 min and stored 

it in a Ziploc bag at 4°C until use, or immediately proceeded to hybridization with the 

sample PCR products. 

PCR products were diluted in 2xSSPE/0.1%SDS at dilutions ranging from 1:10 to 

1:35, similar to other RLB protocols (Rijpkema et al., 1995, Gubbels et al., 1999, Abbasi 

et al., 2009). They were then heated to 100°C for 10 min, followed immediately by 

placement on ice. The membrane was transferred to 2xSSPE/0.1%SDS for 5 min (this 

was also attempted in buffer warmed to 52°C, 60°C, or 62°C) in preparation for 

hybridization. An additional blocking step was also attempted prior to this step, using 

0.5% casein for 3 min. The membrane was then put into a MiniBlotterTM 20 (Immunetics 

Inc., Boston, MA), on top of a foam cushion. Lanes were loaded either with 350µl of 

diluted PCR product or 350µl 2xSSPE/0.1%SDS. The apparatus was incubated for one 

hour at various experimental temperatures of 42°C, 52°C, or 60°C, 62°C, and 70°C. 

When incubated at 52°C, this step was preceded by an additional incubation of 30 min at 

75°C. After hybridization, PCR products were aspirated from the lanes of the 

MiniblotterTM. The membrane was removed,  washed twice in 2xSSPE/0.1%SDS or 

2xSSPE/0.5%SDS for 10 min at 52°C or 62°C, and then incubated for 45 min at 42ºC in 

streptavidin-peroxidase diluted in 2xSSPE/0.5%SDS (O'Sullivan et al., 2011). 
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Sequencing of PCR products 

To address cross-reactions, PCR products generated by amplification of the 12S 

rRNA gene fragment in DNA extracted from two separate ticks known to have fed on a 

quail and cotton rat, were purified and bi-directionally sequenced (Eurofins Operon, 

Huntsville, AL) to confirm identity. 

Results 

By modifying previous approaches, we developed a suitable RLBH protocol for 

testing archived A.maculatum ticks. The mammal, rodent, artiodactyl, and human 

oligonucleotides showed least cross-reaction when 200pmol were put onto the 

membrane; the bird and lizard probes were used at 100pmol. PCR products were 

finalized to be used at 1:35 dilutions and loaded onto a membrane prepared in 0.5% 

casein and 62°C 2xSSPE/0.1%SDS. The optimal hybridization temperature was 

determined to be 70°C, and the first wash was in 2xSSPE/0.5%SDS at 62°C. 

The main issue we experienced with the protocol was cross-reactivity of PCR 

products with various oligonucleotide probes. Cross-reactions with the artiodactyl probe 

(Figure 1) were resolved by switching to a glycerol-free TaqDNA polymerase (B-Bridge 

International Inc., Cupertino, CA). Several times, DNA extractions of avian blood 

hybridized with both avian and mammalian probes (Figure 2). Unfortunately, we did not 

obtain a suitable nucleotide sequence for analysis from the DNA sample of the tick with a 

previous cotton rat bloodmeal; however, the nucleotide sequence generated from the 

DNA sample of the tick with a previous quail bloodmeal was, surprisingly, 100% 

identical to Sigmodon hispidus 12S rRNA gene sequences available in BLAST (Basic 

Alignment Search Tool; National Center for Biotechnology Information). 
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We approached subsequent RLBH assays using PCR amplifications generated 

with new aliquots of the touchdown PCR primers, non-template water controls and one 

positive control (DNA extraction from a wild boar blood sample). This was successful, 

with only the positive sample reacting only with the mammal and artiodactyl probes.  

Once contamination issues appeared resolved and RLBH blots appeared to lack 

evidence of cross-reacting probes, field-collected adult A. maculatum were tested. The 

ticks and the extraction water hybridized only with the mammal probe, suggesting 

continued human DNA contamination. The positive control (wild boar) continued to react 

as expected, and no additional cross-reactions were observed. Subsequently, an 

oligonucleotide probe for Homo sapiens DNA was ordered and RLBH was repeated with 

the same samples, showing that these samples in fact had contamination with human 12S 

rRNA products. Additional RLBH attempts also revealed that many samples, including 

water controls, reacted with the human probe.  

A difference was noted when using two different hybridization temperatures for 

the same PCR products. Avian blood samples and a DNA extraction of a tick reacted 

only with the avian probe when held at a hybridization temperature of 70°C, whereas at 

62°C they also reacted with the mammalian probe (Figure 3). This was repeated using 

field-collected ticks; while those samples continued to react with the human 

oligonucleotide, they did also react with other probes, indicating true “hits”.  

Discussion 

Initial PCR assays failed to produce product as they likely contained an excess of 

DNA template; we therefore optimized the PCR reaction by lowering the amount of 

template to the final volume described above. This resolution allowed our efforts to be 
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focused on the RLBH. The avian oligonucleotide probe, although shown to be specific by 

Humair et al. (2007), was not specific in our hands. This was likely due to contamination 

of many of our avian DNA extracts (during extraction) with human DNA, a contaminant 

that has been reported in other studies (Scott et al., 2012, Humair et al., 2007). In fact, 

Humair et al. (2007) eventually did not include the human or mammalian probes in their 

analyses of field-collected ticks, as they also experienced human DNA contamination. 

Non-specific binding may have occurred if hybridization temperatures were low enough 

to allow for non-specific annealing with mammalian probes (M.C. Scott, personal 

communication).   

The sequence data demonstrating cotton rat DNA in a tick which had fed on a 

quail suggests contamination between samples while performing either DNA extractions 

or PCR setup. Thus, future RLBH assays should be performed using additional measures 

to prevent cross-contamination, as the method appears to be highly sensitive to other 

DNA that may be present in extractions. 

Previous studies analyzing traces of bloodmeal have had variable success. 

Identification of host DNA was achieved in 43.6% (578/1326) of Ixodes ricinus ticks 

collected in Switzerland and targeting the 12S rRNA mitochondrial gene (Cadenas et al., 

2007). Humair et al. (2007) showed similar results with I. ricinus,   reporting detection of 

host DNA in 48.6% (53/109) of ticks analyzed. Vertebrate DNA was identifiable in 

62.8% (869/1383) of A. americanum nymphs in one study targeting a fragment of the 18S 

rRNA gene (Allan et al., 2010) and in 47.17% (409/869) in another study using the 12S 

rRNA as a target (Goessling et al., 2012). An optimized protocol for RLBH performed 

with ticks collected in the North America showed a 53.98% success rate (Scott et al., 
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2012). These low rates may be explained by degradation of host DNA in the tick 

samples; DNA may degrade with longer periods of time between molt and DNA 

detection. This is a question worth investigating, specifically with tick samples. 

Additionally, while host DNA may come from skin cells ingested by feeding ticks as a 

result of attachment, erythrocytes are not nucleated in mammals, possibly adding to 

detection difficulties.  

Various studies report detection of more than one previous host (Allan et al., 

2010, Scott et al., 2012, Humair et al., 2007). Allan et al. (2010) report 16.2% (141/869) 

of nymphal A. americanum ticks as hybridizing with more than one taxonomic probe. 

Ticks experiencing interrupted feeding may be occurring more than was previously 

thought, or some other ecological process may be taking place. Scott et al. (2012) also 

propose that DNA from the host of the larval stage may be detected along with that of the 

host used by the nymphal stage. Cross-reactions, however, are not readily interpreted.  

In the future, RLBH might benefit by focusing on other gene targets for vertebrate 

hosts. For example, the cytochrome c oxidase I (COI) gene exhibits a faster rate of 

evolution than both the 12S rDNA gene, therefore suggesting that COI might be more 

useful in distinguishing among different vertebrate hosts (Kent, 2009).  It would not, 

however, resolve human DNA contamination. This is something that would need to be 

addressed in the care taken when performing DNA extractions. 
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Figure 6.1 Reverse line blot assay showing cross-reactions of host DNA in 
Amblyomma maculatum ticks. 

Shown are cross-reactions with rodent and artiodactyls oligonucleotide probes. This was 
later resolved by using glycerol-free TaqDNA polymerase. Samples included were a 
negative water control (W), adult ticks fed on deer (M1, M2, F1, F2), a field-collected 
adult female (F12), a pool of 10 nymphs (nym) fed on rabbits, and blood from a white-
tailed deer (628).
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Figure 6.2 Reverse line blot assay of avian tissue samples to attempt elimination of 
cross-reaction with mammalian oligonucleotide probes. 

Samples shown include DNA extractions of blood from a Red-tailed hawk (RTHA), 
blood from a turkey (T1), blood from a bobwhite quail (Q5), liver of a bobwhite quail 
(Q11), and half of a tick that was fed on a bobwhite quail as a nymph (Q2a). Unmarked 
lanes between samples contained either negative water controls or hybridization buffer 
(2xSSPE/0.1%SDS). Of note is cross-reactivity of samples with bird and mammalian 
oligonucleotide probes. Additionally, presence of human DNA can be seen in the Q2a 
sample.
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Figure 6.3 Reverse line blot assays performed under same conditions excepting 
hybridization temperatures and wash stringency post-hybridization. 

The hybridization step was done at 62°C for the blot on the left, and at 70°C for the blot 
on the right. Oligonucleotide probes are noted alongside the membranes, and were placed 
on both in the same order. Samples were blood samples from birds (quail, turkey) and 
one tick that was fed on a quail (last lane, faint bands). 
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CHAPTER VII 

OVERALL DISCUSSION AND CONCLUSIONS 

The studies presented here contribute to our knowledge of the ecology of the 

rickettsial agent R. parkeri and its primary tick vector, A. maculatum. The experimental 

and field work described herein have added valuable information to the subject.  

Overall conclusions and implications: 

1. Amblyomma maculatum larvae and nymphs did not feed on anole lizards 

(Anolis carolinensis), suggesting these vertebrates are not important in the 

life cycle of the Gulf Coast tick, and therefore are not involved in the 

ecology of R. parkeri. 

2. Nymphal A. maculatum fed significantly longer on cotton rats (Sigmodon 

hispidus) than on quail (Colinus virginianus), which could allow for better 

transmission of microorganisms to cotton rats compared with quail, 

suggesting that cotton rats are more important to pursue than quail in R. 

parkeri-centered studies. 

3. Engorged nymphal A. maculatum which fed on cotton rats were 

significantly heavier than those fed on quail, which may influence 

acquisition of pathogens from the host and timing and completion of the 

tick life cycle. This could have implications for the ecology of tick-borne 

diseases such as R. parkeri.  
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4. Wild rodents in Mississippi showed evidence of exposure to spotted fever 

group rickettsiae, which could be a result of exposure to R. parkeri or any 

number of SFG organisms. This would signify that ticks carrying 

rickettsiae fed on these animals. 

5. Farm-raised quail in Mississippi showed evidence of exposure to spotted 

fever group rickettsiae, which could include R. parkeri. This again would 

suggest that ticks infected with SFG rickettsiae fed on these quail. 

6. Rickettsiae were isolated from cotton rats experimentally inoculated with 

R. parkeri from skin, blood, and spleen tissue samples taken during the 

acute phase of infection. This suggests that the organism travels through 

these organs in cotton rats and may replicate in one or several of them. 

Cotton rats could therefore harbor R. parkeri. 

7. Experimentally, quail and cotton rats did not show evidence of 

rickettsemia when inoculated with R. parkeri. This may have been due to 

dose administered or it may imply that cotton rats and quail are able to 

quickly clear the organism from circulation, indicating that while they 

could be amplifiers or reservoirs of R. parkeri, a bloodmeal from these 

hosts would not serve as a good source of R. parkeri for naïve feeding 

ticks. 

8. Nymphal A. maculatum fed on experimentally inoculated cotton rats and 

quail did not acquire infection with R. parkeri. This may have been due to 

the animals not receiving high enough doses of R. parkeri or to the ticks 

being placed on the animals too early or late in the infection. 
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Alternatively, it may be that a bloodmeal from these animals is not a good 

source of R. parkeri for naïve feeding ticks and that ticks acquire R. 

parkeri via co-feeding mechanism.  

9. A reverse line blot protocol was developed for the purpose of identifying 

sources of bloodmeal for field-collected A. maculatum. This would prove 

useful in selecting target species for disease studies.  

These conclusions and implications should help to guide future research in this 

area. The results suggest that the animals examined (rodents, passerines, bobwhite quail, 

and anoles) are not acting as reservoirs for R. parkeri. Importantly, it should be noted that 

this work represents single attempts at field work and experimental infections; these 

animals are still worth exploring as possible reservoirs.  Perhaps bobwhite quail and 

cotton rats may also be important as a medium for transmission of the pathogen between 

ticks (co-feeding). An infected tick feeding in the area of the same host may infect a 

neighboring naïve tick. The vertebrate then allows for this exchange, and it is the tick 

instead that is the primary reservoir for R. parkeri. 

On the other hand, it could be that another vertebrate that has yet to be examined 

is in fact a reservoir or an amplifier of R. parkeri. One possibility is the eastern 

meadowlark (Sturnella magna), which has been shown in other studies to be commonly 

parasitized by immature stages of A. maculatum. 

This work has therefore answered some questions, but it has also opened the door 

for future research into questions concerning the ecology of the emerging pathogen, R. 

parkeri. 
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APPENDIX A 

ADDITIONAL INFORMATION FOR CHAPTER III 
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Host preference cage setup 

 

Figure A.1 Cage setup for host preference studies. 

Pictured are two cages connected by PVC tubing, where ticks were placed at time zero 
and allowed to find a host for 24 hours before the tube was removed. This setup was done 
for every host combination (quail--cotton rat, anole--quail, cotton rat--anole) in triplicate. 

Feeding success statistical analyses 

A correction was made post-publication of “Observations on Host Preference and 

Feeding Success of Immature Amblyomma maculatum (Acari: Ixodidae)”: ANOVAs 

should have been used instead of the t-tests used in the feeding success portion of the 

experiments. This allows for analysis of all three species (rat, quail, anole), and accounts 

for the random effect of individuals (n=10 of each species) in the variables tested. The 

proper analysis is detailed below and was computed using the program R. 

 

#Larvae days to engorge 

> larvaedaysFit1 <- lme(days ~ species, data=larvaedays, random=~1 | individual) 

> summary(larvaedaysFit1)$tTable 

                     Value Std.Error DF       t-value      p-value 
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(Intercept)  -3.354431e-16 0.1356090 52 -2.473605e-15 1.000000e+00 

speciesquail  5.396808e+00 0.1589717 52  3.394824e+01 3.684186e-37 

speciesrat    5.254009e+00 0.1441485 52  3.644859e+01 1.059295e-38 

#Significant differences across species, when considering anoles, but not significant 

between quail and rats. 

 

#Larvae total engorged 

> larvaetotalFit1 <- lme(total ~ species, data=larvaetotal, random=~1 | individual) 

> summary(larvaetotalFit1)$tTable 

                    Value Std.Error DF      t-value      p-value 

(Intercept)  4.238047e-16 0.5043808 16 8.402475e-16 1.0000000000 

speciesquail 2.750000e+00 0.7565712 16 3.634820e+00 0.0022290633 

speciesrat   4.300000e+00 0.7133022 16 6.028301e+00 0.0000175584 

#Significant differences across species, when considering anoles, but not significant 

between quail and rats. 

 

#Nymph weights            

> nymphweightFit1 <- lme(weight ~ species, data=nymphweight, random=~1 | 

individual) 

> summary(nymphweightFit1)$tTable 

                     Value   Std.Error DF       t-value      p-value 

(Intercept)  -1.282946e-18 0.001455736 18 -8.813040e-16 1.000000e+00 

speciesquail  1.061002e-02 0.002058722 18  5.153693e+00 6.664932e-05 
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speciesrat    1.408510e-02 0.002058722 18  6.841672e+00 2.107062e-06 

#Significantly different between quail and cotton rats. 

 

#Nymphs days to engorge 

> nymphdaysFit1 <- lme(days ~ species, data=nymphdays, random=~1 | individual)   

> summary(nymphdaysFit1)$tTable 

                 Value Std.Error DF   t-value      p-value 

(Intercept)  0.5454545 0.3720228 44  1.466186 1.497085e-01 

speciesquail 5.8181818 0.4556330 44 12.769449 2.133069e-16 

speciesrat   6.7588933 0.4523192 44 14.942750 7.541400e-19 

#Significantly different between quail and cotton rats. 

 

#Total number engorged for nymphs 

> nymphtotalFit1 <- lme(total ~ species, data=nymphtotal, random=~1 | individual) 

> summary(nymphtotalFit1)$tTable 

                    Value Std.Error DF      t-value      p-value 

(Intercept)  6.532798e-16  1.139876 17 5.731150e-16 1.0000000000 

speciesquail 7.444444e+00  1.656201 17 4.494893e+00 0.0003192188 

speciesrat   5.200000e+00  1.612027 17 3.225752e+00 0.0049645750 
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